Mesenchymal Stem Cell Transplantation for COVID-19
Attapon Cheepsattayakorn1*, Ruangrong Cheepsattayakorn2

10th Zonal Tuberculosis and Chest Disease Center, Chiang Mai, Thailand
2 Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

*Corresponding Author: Attapon Cheepsattayakorn, 10th Zonal Tuberculosis and Chest Disease Center, 143 Sridornchai Road Changkian Muang Chiang Mai 50100, Thailand. Tel: +66 53140767; +66 53276364; Email: Attapon1958@gmail.com

Received Date: 01-04-2020; Accepted Date: 03-04-2020; Published Date: 10-04-2020

Copyright © 2020 by Cheepsattayakorn A, et al. All rights reserved. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

In-vitro, Mesenchymal Stem Cell (MSC) populations with potentials of similar multi-lineage differentiation have been obtained from several Bone Marrow (BM) and non-bone marrow tissues, including umbilical cord, placenta, amniotic fluid, adipose tissue, and peripheral blood [1-10]. The clonogenic BM-human MSCs fraction ranges from 10 to 100 Colony-Forming Unit-Fibroblast (CFU-F) per 106 Marrow Mononuclear Cells (MNCs) [11]. BM-human MCSs are characterized by lacking CD11b, CD14, CD19, D34, CD45, CD79α, and Human Leukocyte Antigen (HLA)-DR expression; positive expression of surface antigens CD73, CD90, and CD105; multipotency (i.e., chondrogenic, osteogenic, and adipogenic); and their adherence to plastic [11]. By the year 2000, clinicians increasingly had become interested in intravenously applied MSC therapy [12]. A previous study demonstrated that both human and murine MCSs can induce immune suppression by attracting and killing auto reactive T cells via FasL, therefore stimulating Transforming Growth Factor-beta (TGF-β) production by macrophages and generation of regulatory T cells [13]. The dying T cells that is caused by the interaction involving the MSC-induced Monocyte Chemoattractant Protein-1 (MCP-1) secretion in turn activate macrophages to produce TGF-β, then stimulating regulatory T cells and promoting immune tolerance [14]. The capacity of MSCs for in-vivo differentiation and engraftment and by their efficacy in promoting wound healing highlighted its clinical relevance [15-21].

In 2006, the International Society for Cellular Therapy came up with the guidelines for MSC characterization for standardization the MSC biology, definition, isolation, and characterization criteria, in-vivo relevance, and ethical and institutional regulations for its...
clinical use [11]. Since the COVID-19 pandemic, there are several ongoing trials that have been studied in China, such as the ClinicalTrials.gov identifiers: NCT04252118, NCT04273646, NCT04276987, NCT04293692, NCT04302519, NCT04288102, etc. for fighting against severe COVID-19 or COVID-19 pneumonia [22-27]. MSCs can decrease the overproduction of immune cells caused by a reaction to the COVID-19 and decrease excessive levels of inflammatory substances, contributing to regulating the immune system and recovering to the normal status, particularly of the elderly patients [28].

In conclusion, human MSCs are currently being evaluated as a stem cell treatment for a number of diseases, particularly severe COVID-19 and have been demonstrated to be safe in clinical trials. Nevertheless, further studies are urgently needed to investigate and optimize a number of variables in the human MSC culture environment by developing a bioprocess that can be operated in accordance with the Good Manufacturing Product (GMP).

References


