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Abstract 

Lactobacillus acidophilus is a commonly used probiotic that offers numerous health benefits in 

the human gut, particularly in addressing various disorders. L. acidophilus North Carolina Food 

Microbiology (NCFM), a specific and well-characterized strain, has been classified by the US 

FDA as "Generally Recognized As Safe" (GRAS) for inclusion in dairy fermentation and 

probiotic formulations, highlighting its potential for engineered probiotic applications. 

Mathematical kinetic models allow for the development of time-course profiles for the 

metabolites produced by these bacteria, which can be used in future metabolic engineering or 

synthetic biology projects but a whole cell kinetic model L. acidophilus NCFM has not yet been 

established. In this study, a whole-cell simulatable model of L. acidophilus NCFM (lacAS24) was 

developed using an ab initio approach, identifying enzymes based on its published genome. 

The resulting model encompasses 580 metabolites, 231 enzymes with 581 enzymatic reactions. 

This preliminary model provides a basis for further incorporating additional cellular functions 

or novel growth mechanisms supporting future advances in biotechnology. 
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Introduction 

Lactobacillus acidophilus NCFM was isolated from the human gastrointestinal tract in the late 

1970s as part of a study aimed at identifying probiotic bacteria capable of surviving gastric 

conditions, colonizing the gut and providing health benefits [1,2]. Functional studies have 

revealed several strain-specific genetic determinants that contribute to its hallmark 

characteristics; such as, enhanced adhesion intestinal mucosa, high acid and bile tolerance and 

immunomodulatory effects [3-6]. As a result, US FDA has granted it "Generally Recognized as Safe" (GRAS, GRN No. 357) status 

for use in probiotic formulations and dairy fermentation. This renders L. acidophilus NCFM as a promising candidate for the 

mucosal delivery of vaccines and biotherapeutics [7]. 

 

Mathematical modelling is an important aspect in both metabolic engineering and synthetic biology as it can predict biological 

phenotypes under metabolic perturbations, which can be used to guide engineering approaches [8-10] including biotherapeutic 

engineering [11]. Kinetic Models (KMs) use Ordinary Differential Equations (ODE) to define the rate of change of concentrations 

of the metabolites involved, which offers a transient dynamic approach as it provides specific solutions in time for steady-state 

fluxes from the initial concentration of the substrates [12,13]. This allows KMs to address the relationships between flux, enzyme 

expression, metabolite levels and regulation; and provide time-course profile of modelled metabolites [14-16].  
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However, there is no KM of L. acidophilus to-date. As such, this study aims to construct a KM of L. acidophilus NCFM using ab 

initio approach by identifying enzymes from its published genome and identifying the corresponding reaction from KEGG [5,17]. 

The result is a whole cell KM of L. acidophilus NCFM, named as lacAS24 using the nomenclature proposed by Cho and Ling, 

which consists of 580 metabolites, 231 enzymes with corresponding transcriptions and translations and 581 enzymatic reactions 

[14]. 

 

Material and Methods  

Identification of Reactome 

The genome of Lactobacillus acidophilus NCFM (Accession number CP000033.3) was used as source to identify enzymatic genes 

using the process described in Kwan, et al., [18,19]. Briefly, each enzymatic gene was identified as a presence of complete Enzyme 

Commission (EC) number in the GenBank record or via the coding sequence’s protein ID or locus tag. Each EC number is then 
mapped into reaction IDs via KEGG Ligand Database for Enzyme Nomenclature [17]. For example, lactate dehydrogenase (EC 

1.1.1.27) maps to https://www.genome.jp/entry/1.1.1.27, showing three reactions: R00703 (C00186 and C0003 to produce C00022, 

C00004 and C00080), R001000 (C05984 and C00003 to produce C00109, C00004 and C00080) and R03104 (C05823 and C00003 to 

produce C00957, C00004 and C00080). 

 

Model Development 

Given that the number of RNA polymerase per Escherichia coli cell is 3000 (BioNumbers 106199) where about 25% of the RNA 

polymerases are active (BioNumbers 111676) with the polymerization rate of 22 ribonucleotides per second (BioNumbers 104109) 

and the average ribonucleotide is 339.5 Daltons, the total mRNA synthesis rate per E. coli cell can be estimated as 5600 kDa per 

second [20-22]. One Dalton is 1.66054e-24 gram; hence 5600 kDa per second is 9.3e-18 grams per second. Given that the volume 

of one E. coli cell is about 0.7 cubic micrometres or 7e-16 litres with 4225 protein-coding genes (BioNumbers 105443), the total 

mRNA synthesis rate can be estimated at 2.92 uM per protein-coding genes per second [23,24]. The average lifespan estimated 

from 11 E. coli mRNA transcripts is 1.79 minutes (BioNumbers 107666) or 107.56 seconds; therefore, 0.93% degraded per second 

[25]. Therefore, the rate law for mRNA concentration can be written as d[mRNA]/dt = (0.00292 - 0.0093[mRNA]) mM per second.  

 

Given that the median protein synthesis in mammalian cell culture is 1000 peptides per mRNA transcript per hour (BioNumbers 

106382), which equates to 0.278 peptides per mRNA transcripts per second and the average protein degradation rate for E. coli 

is about 1% per hour (BioNumbers 109924), which equates to 0.00000278 per second; the rate law for peptide concentration can 

be written as d[peptide]/dt = (0.278[mRNA] - 0.00000278[peptide]) uM per second [26,27]. 

 

The reactome was modelled as a set of Ordinary Differential Equations (ODEs) where each ODE represented one metabolite 

concentration as previously described [19,28]. The kcat and Km were set at 13.7 per second and 1 millimolar, respectively; which 

were the median values from a survey of more than 1000 enzymes by Bar-Even, et al., [29]. The model was written in accordance 

to AdvanceSyn Model Specification [30].  

 

Model Simulation 

The constructed model was tested for simulatability using AdvanceSyn Toolkit [30]. Initial concentrations of all mRNA and 

enzymes were set to 0 mM. Initial concentrations of all metabolites were set to 1 mM except the following which were set to 1000 

mM: (i) C00001 (Water), (ii) C00002 (ATP), (iii) C00003 (NAD+), (iv) C00004 (NADH), (v) C00005 (NADPH), (vi) C00006 

(NADP+), (vii) C00007 (Oxygen), (viii) C00011 (Carbon Dioxide), (ix) C00014 (Ammonia), (x) C00025 (L-Glutamate), (xi) C00031 

(D-Glucose), (xii) C00037 (Glycine), (xiii) C00041 (L-Alanine), (xiv) C00047 (L-Lysine), (xv) C00049 (L-Aspartate), (xvi) C00064 

(L-Glutamine), (xvii) C00065 (L-Serine), (xviii) C00073 (L-Methionine), (xix) C00097 (L-Cysteine), (xx) C00133 (D-Alanine), (xxi) 

C00148 (L-Proline). The model was simulated using the fourth-order Runge-Kutta method from time zero to 3600 seconds with 

timestep of 0.1 second and the concentrations of metabolites were bounded between 0 millimolar and 1000 millimolar [31,32]. 

The simulation results were sampled every 2 seconds.  

 

Results and Discussion 

The annotated genome of L. acidophilus NCFM consists of 1928 genes, including 1775 protein coding sequences [18]. 772 EC 

numbers; of which, 581 are unique with identifiable reactions from KEGG [17]. From these 581 unique EC numbers, 231 
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enzymatic reactions involving 580 metabolites were identified and developed into a model based on AdvanceSyn Model 

Specification [30]. In addition, 260 ODEs acting as placeholder for enzyme transcriptions and translations were added.  

 

The resulting model, denoted as lacAS24, was simulated using AdvanceSyn Toolkit [30]. Our simulation results (Fig. 1) suggest 

that the model is free from syntax error as the simulation results illustrate the fluctuations in metabolite concentrations over time, 

which are indicative of dynamic enzyme-substrate interactions within the kinetic model. These fluctuations highlight the 

complex biochemical processes occurring in the system. Specifically, the concentration of NAD+ (C00003) decreases over time, 

suggesting that it is being consumed or utilised in reactions as it functions as an electron carrier in redox reaction such as 

glycolysis or even during fermentation. Thus, monitoring the changes in the concentration of NAD+ over time using the kinetic 

model presented in this study can allow researchers to infer that the organism is actively metabolising releasing energy [33]. If 

NAD+ is being rapidly consumed, it can point towards increased cellular growth or stress responses. In contrast, the 

concentration of phosphoric acid (C00009) exhibits noticeable fluctuations, reflecting its involvement in various biochemical 

reactions within the organism, possibly as part of phosphate homeostasis which is a common physiological process in many 

bacterial species including L. acidophilus [34]. Fluctuations in the phosphate pool in the organism could also be attributable to 

increased demand for phosphates which are required for nucleic acid synthesis by organisms experiencing rapid cell division. 

These patterns suggest that the metabolic network is actively adjusting to maintain homeostasis, with metabolites being 

continuously cycled, utilized and replenished as part of the organism's ongoing metabolic processes. 

 

However, these simulation results cannot be taken at face value as all enzyme kinetics (turnover number and Michaelis-Menten 

constant) are kept the median levels [29]. Hence, we present a simulatable whole cell KM of L. acidophilus NCFM, which can be 

a base template for incorporating other cellular and growth processes or as a system to examine cellular resource allocations [35-

41]. At the same time, it can also be used to simulate different combinations of probiotics with supplement to identify possible 

synergistic effects as Kim, et al., suggest a synergistic effect between L. acidophilus and prebiotic Curcuma Longa Rhizome Extract 

(CLE) [42]. 

 

 
Figure 1: Selection of simulation results. 

 

Conclusion 

In this study, we present an Ab initio whole cell kinetic model of Lactobacillus acidophilus NCFM built from the enzymes from its 

genomic sequence. The resulting kinetic model, lacAS24; comprising of 580 metabolites, 231 enzymes with corresponding 

transcriptions and translations and 581 enzymatic reactions. 
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Supplementary Materials 

Reaction descriptions and model can be download from https://bit.ly/lacAS24  
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