COVID-19 Vaccination in Immunocompromised Persons: Challenges in COVID-19 Control and Prevention

Attapon Cheepsattayakorn1,2*, Ruangrong Cheepsattayakorn3, Porntep Siriwanarangsun1

1Faculty of Medicine, Western University, Pathumtani Province, Thailand
210th Zonal Tuberculosis and Chest Disease Center, Chiang Mai, Thailand
3Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

*Corresponding Author: Attapon Cheepsattayakorn, 10th Zonal Tuberculosis and Chest Disease Center, Sridornchai Road Changklan Muang Chiang Mai, Thailand; Email: Attapon1958@gmail.com

Received Date: 22-09-2021; Accepted Date: 09-10-2021; Published Date: 16-10-2021

Copyright© 2021 by Cheepsattayakorn A, et al. All rights reserved. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Editorial

Preliminary data of phase II/III clinical trials of BNT162b2 (Pfizer/BioNTech) and mRNA-1273 (Moderna) vaccines those were investigated in more than 50 million COVID-19 cases and 1.35 million COVID-19 related deaths worldwide revealed to be about 95 % effective in COVID-19 prevention and both trials revealed more than 90 % of lowering the severe-COVID-19 illness risk, whereas theses clinical vaccine trials excluded immunocompromised patients, patients on immunosuppressive drugs, or those with immunosuppressive status [1-4]. BNT162b2 (Pfizer/BioNTech) and mRNA-1273 (Moderna) vaccines encode the RBD of SARS-CoV-2 (COVID-19) spike protein and the S-2P antigen, respectively [5,6]. A strong humoral response and strong cellular response were elicited by both vaccines through neutralizing-antibody production and a strong cellular response and through inducing Th1-cytokine production and functional and pro-inflammatory CD4+ and CD8+ T-cells, respectively [5,6]. Methotrexate and rituximab can decrease the neutralizing-antibody-to-neoantigen production, such as SARS-CoV-2 (COVID-19) that have been demonstrated the reduction of humoral responses to pneumococcal and seasonal influenza vaccines [7,8]. Hypothetically, humoral suppression by methotrexate is mediated by increasing regulatory B cells and immunosuppressive adenosine and interaction with the B-cell Activation Factor.
(BAF) and with significant improvement by temporarily discontinuing for 2 weeks post-influenza vaccination, whereas rituximab directly suppresses CD20+ B-cells that is significant humoral-response-to-polysaccharide-pneumococcal-vaccination reduction and significant decrease in the immune response to neoaogen [9-11].

In conclusion, rituximab and methotrexate on immune response of a SARS-CoV-2 (COVID-19) vaccine are to be investigated, yet. Two weeks of holding methotrexate and a few weeks of scheduling after the COVID-19 vaccination are considered until the questions are answered by the further clinical trials.

Conflicts of Interest

The authors declare that have no competing interest and not any conflict of interest.

References