




E-ISSN: 3068-3726

Case Report

# Case Study of Rapid Recovery of a Complete Anterior Cruciate Ligament (ACL) Rupture Through Orthobiologic-Driven Regeneration: Magnetic Resonance Imaging (MRI) Validation

Zane Sherif<sup>1\*</sup>, Kirralee Sherif<sup>1</sup>, Amanda Forbes<sup>1</sup>, Ben Kennedy<sup>1</sup>, Bryce Allen<sup>1</sup>

<sup>1</sup>Mermaid Beach Radiology, Gold Coast, Queensland, Australia

\*Correspondence author: Zane Sherif, MBBCh, MSc, FRANZCR, Mermaid Beach Radiology, 2469 Gold Coast Highway, Mermaid Beach QLD 4218, Australia; Email: [zanesherif@gmail.com](mailto:zanesherif@gmail.com); [zane.sherif@mermaidbeachradiology.com.au](mailto:zane.sherif@mermaidbeachradiology.com.au)

## Abstract

Conservative management of complete Anterior Cruciate Ligament (ACL) tears traditionally involves surgical reconstruction or prolonged rehabilitation, with limited biological repair potential. Orthobiologic treatments such as Platelet-Rich Plasma (PRP), stem cell injections and biologic scaffolds offer a potential non-surgical alternative. This case presents 3T Magnetic Resonance Imaging (MRI) evidence of accelerated ACL healing within one week of orthobiologic intervention using the Sherif ACL Protocol. A 38-year-old male sustained a complete left ACL tear and underwent seven orthobiologic treatments between 2 July and 22 August 2025. MRI performed at each treatment demonstrated rapid tissue bridging within nine days of the first treatment, with progressive signal normalization and morphological restoration over six weeks. These findings suggest that targeted biologic intervention may enable intrinsic ACL repair by activating endogenous regenerative pathways - supported by serial 3T MRI evidence of rapid tissue bridging, signal normalisation and morphological restoration - offering a biologically driven, non-operative alternative to surgical reconstruction.

**Keywords:** Anterior Cruciate Ligament (ACL); ACL Tear; Platelet-Rich Plasma (PRP); Orthobiologic Therapy; 3T MRI; Non-surgical ACL Repair; Sherif ACL Protocol

## Abbreviations

ACL: Anterior Cruciate Ligament; PRP: Platelet-Rich Plasma; MRI: Magnetic Resonance Imaging; DPI: Days Post-Injury; PAW: Platelet Activation and White cell classification system

## Introduction

Complete ACL tears are among the most common sports-related injuries, with an incidence of approximately 68.6 per 100,000 person-years in young active populations [1]. Conventional treatment typically favours surgical reconstruction because the intra-articular environment, limited vascularity and continuous mechanical strain have been considered unfavourable for spontaneous healing [2].

Orthobiologic therapies including Platelet-Rich Plasma (PRP), bone-marrow concentrate and other cell-based injectables have shown promise in accelerating soft-tissue healing through growth-factor release, stem-cell differentiation and extracellular-matrix support [3]. These biologic interventions act by modulating inflammation, promoting angiogenesis and enhancing collagen synthesis within the native ligament environment. Preclinical studies have demonstrated that concentrated platelet and progenitor-cell products can upregulate key regenerative pathways such as TGF- $\beta$ , PDGF and VEGF signaling, which are critical to fibroblast proliferation and tissue remodeling. Furthermore, MRI and histologic analyses in animal models suggest that biologic augmentation can improve fibre organization and tensile strength in healing ligament tissue. Despite these findings, most human studies have focused on partial ACL injuries or intra-operative augmentation rather than complete non-surgical regeneration. Thus, evidence for rapid intrinsic restoration of a fully ruptured ACL remains extremely limited, underscoring the significance of the present case. This case presents the first known MRI-documented example of rapid ACL recontinuity within one week of orthobiologic intervention, demonstrating that complete ACL rupture may be biologically repairable under optimised conditions.

Citation: Sherif Z, et al. Case Study of Rapid Recovery of a Complete Anterior Cruciate Ligament (ACL) Rupture Through Orthobiologic-Driven Regeneration: Magnetic Resonance Imaging (MRI) Validation. *J Ortho Sci Res*. 2025;6(3):1-5.

<https://doi.org/10.46889/JOSR.2025.6312>

Received Date: 28-10-2025

Accepted Date: 17-11-2025

Published Date: 24-11-2025



Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

## Methodology

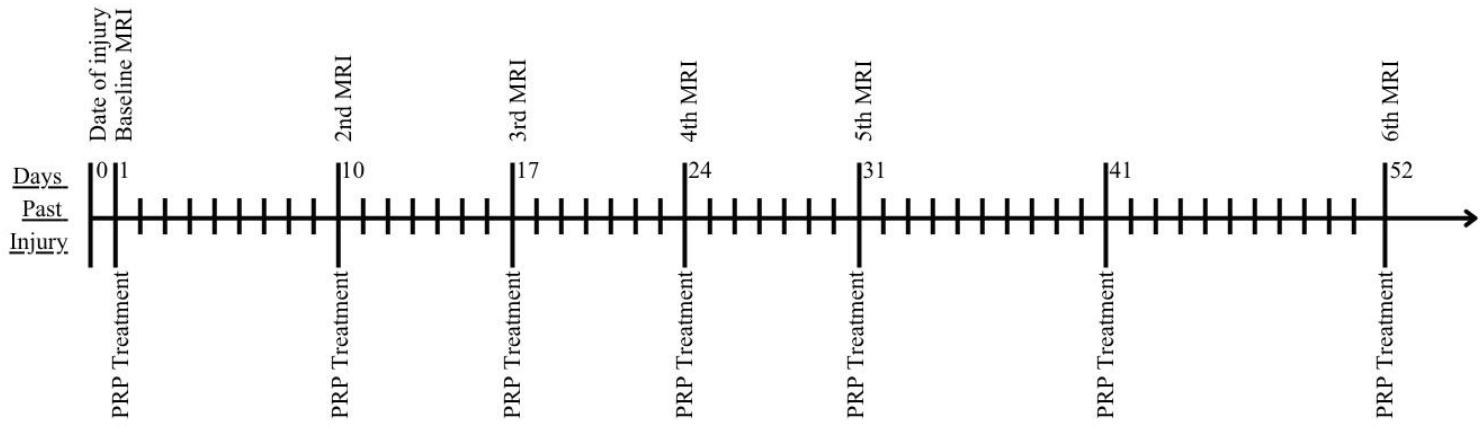
*Study Design: Single-Patient Case Report*

*Participant:* A 38-year-old male sustained a non-contact left-knee injury during basketball on 1 July 2025. The patient had no prior knee injury or major comorbidity.

### Data Collection

Baseline MRI (1 DPI) was obtained using a research-grade 3 T Philips Elition X scanner with a dedicated knee coil. Sequences included 2 mm coronal/axial Proton-Density (PD) with fat suppression, 1.5 mm sagittal PD and T2 fat-suppressed and 1 mm paracoronal PD aligned to the ACL. Imaging confirmed complete ACL rupture with a 13.6 mm stump gap and marrow oedema in the distal fibula and proximal tibia. A small impaction fracture was visible at the lateral femoral condyle.

### Orthobiologic Intervention Sheriff ACL Protocol


- Biologic preparation: Autologous PRP (> 10 billion platelets, leukocyte-rich, non- activated; PAW P4-A $\alpha$  classification [6])
- Guidance: CT or ultrasound-guided injection into femoral and tibial footprints and intraarticular region, aligned to MRI morphology [5]
- Schedule: Seven weekly injections from 2 July to 22 August 2025
- Rehabilitation: Early immobilisation in ROM brace; physiotherapy commenced 13 DPI; brace discontinued  $\approx$  4 weeks post-injury

### Data Analysis

Images were reviewed by fellowship-trained musculoskeletal radiologists (> 10 years' experience).

## Case Report

At 1 DPI, MRI confirmed complete fiber disruption with 13.6 mm separation and high- signal interposed fluid. At 10 DPI, imaging showed complete but immature fiber bridging and partial signal normalisation. Joint effusion and marrow oedema had decreased relative to baseline. By 33 DPI, ligament continuity was robust, with low-signal fibers resembling native morphology. Progressive maturation continued through 52 DPI, consistent with collagen remodeling (Fig. 1,2) [4,8].

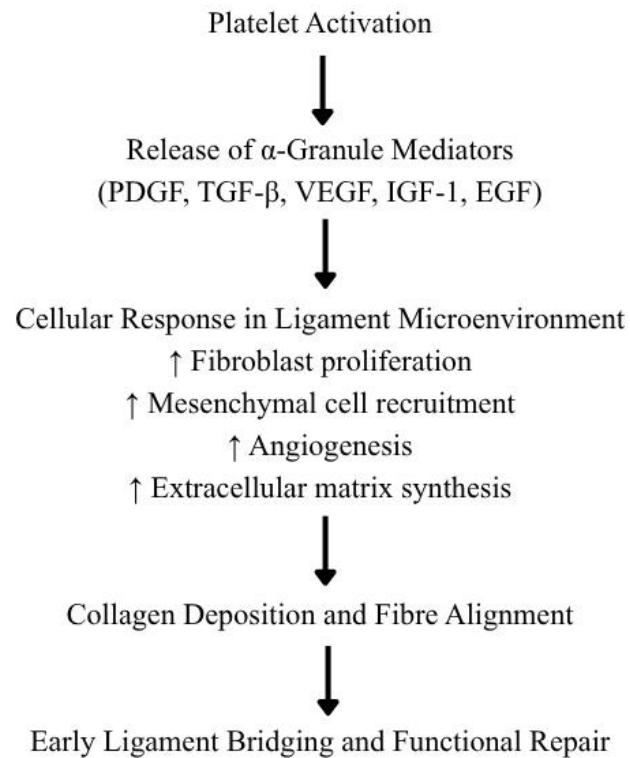


**Figure 1:** Timeline of orthobiologic treatments and MRI acquisition schedule.



**Figure 2:** Sequential 3 T MRI images demonstrating rapid ACL healing from 1 DPI to 52 DPI.

#### Clinical Course


Physiotherapy began approximately two weeks after injury. Brace was removed approximately 3 weeks post injury (daytime) and fully at 4 weeks post injury. By  $\approx$  30 days, the patient reported normal knee function; transient swelling after each injection diminished progressively. No re-injury or instability occurred at 8 weeks.

#### Discussion

This case report demonstrates MRI-verified ACL recontinuity within one week of biologic therapy - challenging the dogma that complete ACL ruptures lack spontaneous repair capacity [2]. The Sheriff ACL Protocol combines high-platelet-dose PRP, precise image-guided delivery and structured rehabilitation, producing a biologic environment conducive to early ligament bridging. This multimodal design is rationalized by the synergistic effects of concentrated growth-factor release, accurate intra-ligamentous targeting and progressive mechanical stimulation - each of which supports angiogenesis, fibroblast recruitment and collagen alignment essential to early tissue continuity [3-5].

#### Mechanistic Insights

1. Platelet  $\alpha$ -granules release PDGF, TGF- $\beta$ , VEGF and other mediators stimulating fibroblast proliferation and collagen synthesis. Fig. 3 provides a schematic representation of the proposed mechanism by which platelet  $\alpha$ -granule growth factors including PDGF, TGF- $\beta$ , VEGF and other mediators - stimulate fibroblast proliferation, angiogenesis and collagen synthesis, resulting in early ligament bridging and accelerated functional repair [3,9]
2. Leukocyte-rich PRP augments cytokine cascades and extracellular-matrix remodelling [10]
3. Fibrin scaffolds provide a temporary matrix for cellular migration and fiber continuity



**Figure 3:** Mechanism of PRP-mediated ligament healing.

#### Comparison with Prior Work

PRP- or BMAC-assisted ACL repair has previously required months for detectable healing. Zicaro, et al., reported improved MRI signal at 6 months [7]. Centeno, et al., documented gradual recovery [11]. The surgical BEAR scaffold achieved biological healing only with operative augmentation [12-15]. Hada, et al., reported PRP-mediated healing over weeks-to-months [16].

In contrast, the present case achieved MRI-proven fiber bridging by day 10, suggesting dose, timing and delivery precision as key determinants of accelerated repair [9].

#### Limitations

Single-case design, short follow-up and lack of control limit generalisability. Spontaneous repair cannot be fully excluded, but the rapid timeline and structured biologic protocol make this unlikely [17-19].

#### Implications

If reproducible, biologically mediated ACL repair could provide a non- surgical option for select patients, reducing morbidity, recovery time and cost [20,21].

#### Conclusion

This case provides the first MRI-documented evidence of rapid anterior cruciate ligament (ACL) fibre re-continuity within approximately one week following orthobiologic therapy. The Sherif ACL Protocol - combining high-platelet-dose PRP, precise image-guided delivery and structured rehabilitation - illustrates a biologically rational framework for intrinsic ligament regeneration. The principal strengths include the documented imaging evidence of early healing, demonstrating the feasibility of a non-surgical solution to an injury traditionally managed with reconstruction. Limitations include the single-case design, short follow-up duration and absence of a control group. Although spontaneous recovery cannot be entirely excluded, the rapid timeline and structured biologic protocol make this unlikely. Validation in larger controlled cohorts is warranted to confirm reproducibility and define the broader applicability of biologic restoration in place of surgical reconstruction.

## Conflict of Interests

The authors declare that there is no conflict of interest related to this study.

## References

1. Sanders TL. Incidence of anterior cruciate ligament tears and reconstruction: A 21-year population-based study. *Am J Sports Med.* 2016;44(6):1502-7.
2. Previ L. Spontaneous healing of a ruptured anterior cruciate ligament: A case series and literature review. *J Exp Orthop.* 2023;10(1):11.
3. Andia I, Maffulli N. Biologic approaches for ligament healing: PRP, stem cells and biomaterials. *Sports Med Arthrosc Rev.* 2020;28(3):91-8.
4. Murray MM, Spindler KP, Ballard P, Welsh ML, Zurakowski D, Nanney LB. Enhanced biological healing of the anterior cruciate ligament with platelet-rich plasma and scaffolds. *Am J Sports Med.* 2010;38(3):550-9.
5. Zhang J, Wang JH. The effects of mechanical loading on tendons and ligaments. *J Orthop Res.* 2013;31(6):907-13.
6. Filardo G. Platelet-rich plasma for the treatment of injuries to ligaments, tendons and cartilage. *J Sports Med Phys Fitness.* 2016;56(4):414-22.
7. Zicaro JP. Has platelet-rich plasma any role in partial tears of the anterior cruciate ligament? Prospective comparative study. *World J Orthop.* 2021;12(6):423-32.
8. Smith J. Sonographically guided anterior cruciate ligament injection: Technique and validation. *PMR.* 2015;7(7):736-45.
9. DeLong JM. Platelet-rich plasma: The PAW classification system. *Arthroscopy.* 2012;28(7):998-1009.
10. Devereux J. Leucocyte-rich platelet-rich plasma enhances fibroblast and extracellular matrix activity: Implications in wound healing. *Int J Mol Sci.* 2020;21(18):6519.
11. Centeno CJ. Anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow nucleated cells: A case series. *J Pain Res.* 2015;8:437-47.
12. Murray MM, Fleming BC. Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes post-traumatic osteoarthritis after surgery. *Am J Sports Med.* 2013;41(8):1762-70.
13. Vavken P, Murray MM. The potential for primary repair of the ACL. *Sports Med Arthrosc Rev.* 2011;19(1):44-9.
14. Fleming BC. Bridge-enhanced anterior cruciate ligament restoration: 6-year results from the first-in-human cohort study. *Orthop J Sports Med.* 2024;12(8):23259671241260632.
15. Shah AK. Indications, techniques and outcomes of bridge-enhanced ACL restoration (BEAR). *Curr Rev Musculoskelet Med.* 2025;18:140-8.
16. Hada S. Conservative treatment using platelet-rich plasma for acute anterior cruciate ligament injuries in highly active patients: A retrospective survey. *Cureus.* 2024;16(1):e53102.
17. Costa-Paz M. Spontaneous healing in complete ACL ruptures: MRI and arthroscopic findings. *Knee Surg Sports Traumatol Arthrosc.* 2012;20(2):277-83.
18. Nakamae A. Spontaneous healing of a completely ruptured anterior cruciate ligament: A case report and review of the literature. *J Orthop Sci.* 2022;27(1):258-62.
19. Kiapour AM, Murray MM. Basic science of anterior cruciate ligament injury and repair. *Bone Joint Res.* 2014;3(2):20-31.
20. Ye Z. Effect of platelet-rich plasma on recovery after anterior cruciate ligament reconstruction: A randomized clinical trial. *JAMA Netw Open.* 2024;7(5):e2410134.
21. Pinho PV, Defante ML, Oliveira GM, Júnior JF. Platelet-rich plasma and its analogues does not clinically improve functional outcomes one year after acl reconstruction: A meta-analysis of randomized controlled trials. *Arthroscopy: The Journal of Arthroscopic and Related Surgery.* 2025.

**Journal of Orthopaedic Science and Research**



**Publish your work in this journal**

Journal of Orthopaedic Science and Research is an international, peer-reviewed, open access journal publishing original research, reports, editorials, reviews and commentaries. All aspects of orthopaedic health maintenance, preventative measures and disease treatment interventions are addressed within the journal. Orthopaedicians and other researchers are invited to submit their work in the journal. The manuscript submission system is online and journal follows a fair peer-review practices.

**Submit your manuscript here: <https://athenaeumpub.com/submit-manuscript/>**