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Commentary Article  

Vitamin A (retinol) and its derivatives, collectively referred to as retinoids, are gaining 

increasing appreciation in managing neurodegenerative diseases such as Alzheimer’s 
Disease (AD), Amyotrophic Lateral Sclerosis (ALS), Huntington Disease (HD) and 

Parkinson’s Disease (PD) [1-12]. Retinoic Acid (RA) is the principal active metabolite of 

vitamin A and has profound roles in numerous biological processes and organ systems, 

including differentiation, proliferation, cell death programs, development, immunity, 

the Central Nervous System (CNS) and the visual system, etc [13]. RA exerts its effects 

by two major mechanisms, binding nuclear RA Receptors (RARs) to regulate gene 

expression in the nucleus (canonical mechanism) and binding its cytosolic receptors, 

Cellular RA Binding Proteins (CRABPs) for metabolism or cytosolic signaling [14]. In 

addition, RA has also been reported to directly modulate kinases such as PKC or certain 

activity of extranuclear RARs (reviewed in-depth elsewhere) [15]. In the cytoplasm, 

CRABP2 binds RA to facilitate its metabolism, whereas CRABP1 binds RA to elicit its 

regulatory activities in multiple cytosolic signaling pathways [16-18]. These CRABP1-

targeted cytosolic signaling complexes are named CRABP1-signalosomes and are 

referred to as the main non-canonical mediators of RA. This commentary focuses on the 

CRABP1-mediated non-canonical activities of RA, which are characterized by three 

features - independence from RARs, cytosolic localization and rapid (minutes) actions 

[17]. 

 

As a therapeutic agent, RA and its analogs have been proposed to act through the 

canonical mechanism mediated by nuclear RARs - inducing changes in the expression of 

genes that are generally neuroprotective and/or neuro-regenerative. These genomic 

changes can facilitate neurogenesis, dampen neuroinflammation and oxidative stress 

and modulate proteostasis [5,6]. However, one serious concern about this RAR-centric approach is its extreme toxicities (retinoic 

acid/differentiation syndrome), severely hindering its clinical application for decades [18,19]. Importantly, RA-mimetic 

compounds can be designed to specifically bind CRABP1 without engaging RARs. This CRABP1-mediated, non-canonical 

mechanism offers a unique opportunity to develop new retinoid therapeutics without eliciting serious adverse effects such as 

retinoic acid syndrome.  

 

CRABP1 can form protein complexes (named CRABP1-signalosomes) with certain components of multiple signaling pathways 

to modulate specific signal propagation in the cytoplasm [18]. Several CRABP1-signalosomes have been implicated in 

maintaining neuronal health/function, thereby preventing/halting degeneration. Maintaining the health and function of neurons 

depends on proper and timely modulation of multiple rapid and dynamic signaling pathways that govern essential neuronal 

processes, in particular, excitability and stress responses [20-25]. Through molecular and in-vivo studies of Crabp1 Knockout 

(CKO) models (mice and primary cultures), we have identified multiple CRABP1-signalosomes that can regulate neuronal 

excitability and stress responses or modulate neuroinflammation and neural stem cell proliferation [26]. 
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Firstly, the CRABP1-CaMKII signalosome dampens over-excited CaMKII activity, thereby protecting neurons from excitotoxic 

insults and axonal degeneration and preserving neuromuscular junction integrity and motor function in mice [27]. Secondly, the  

CRABP1-IRE1α signalosome can modulate stress-response, particularly the unfolded protein response in the Endoplasmic 

Reticulum (ER-UPR), which was first demonstrated in thyrocytes. We then identified a potential neuronal CRABP1-eIF2α 

signalosome which can regulate the Integrated Stress Response (ISR) [28]. In CKO mouse spinal cord tissues, failure of eIF2α 
activation retards the engagement of mitochondrial UPR and compromises oxidative stress management, which is essential for 

maintaining cellular homeostasis under sustained stress and critical for neuronal health and function [24,29]. Consistently, 

dysfunction of IRE1α and eIF2α-mediated stress signaling has been implicated in neurodegeneration [22,30,31]. Thirdly, 

CRABP1-MAPK signalosome modulates neural stem cell proliferation, thereby impacting memory function. Finally, based on 

our unbiased proteomic profiling of CRABP1-containing protein complexes, CRABP1-signalosomes can also directly involve 

many kinases [32]. Regulating kinase has emerged as an attractive approach in managing neurodegeneration [33,34]. Based on 

these findings, we propose that targeting CRABP1 signalosomes offers a potentially more effective strategy to address the 

multifactorial nature of neurodegeneration. In particular, it can be very attractive to exploit novel RA-mimetic and signaling 

pathway-selective (or biased) specific CRABP1-binding compounds, such as those we have characterized in the past [26]. Because 

of their CRABP1-specificity and signaling pathway-selectivity, these RA-mimetic compounds are less likely to elicit RA toxicities 

mediated, mainly, by RARs that are almost ubiquitously present.    

 

Mining human disease datasets have revealed that CRABP1 expression is significantly reduced in several Motor Neuron (MN) 

degeneration diseases including ALS and Spinal Muscular Atrophy (SMA) [18]. Given the vastly different disease pathogenesis 

of ALS and SMA, the loss of CRABP1 expression in these diseases suggests that proper expression of CRABP1 is important for 

the maintenance of MN health in general [34,35]. To this end, our bioinformatic studies also revealed several Single Nucleotide 

Polymorphisms (SNPs) present in the promoter region of CRABP1 gene in ALS patients, which validates the relevance and 

significance of controlling CRABP1 gene expression, particularly for the health/function of MNs [18]. It is tempting to speculate 

that maintaining a proper level of CRABP1 gene expression, thus providing enough CRABP1-signalosomes, is an essential 

process required for the integrity and function of neurons, at least for spinal MNs. Coincidentally, age is a known risk factor for 

ALS in human patients, CKO mice develop ALS-like phenotype in an age-dependent manner and bioinformatic data have 

revealed that CRABP1 expression decreases with age in human spinal cord tissues [18,34,36]. 

 

In conclusion, recent studies have established CRABP1 as a major mediator of non-canonical activities of RA which acts to 

modulate cell-context specific signaling pathways through CRABP1-signalosomes in the cytoplasm. The physiological basis of 

these CRABP1-signalosomes has been uncovered mostly by studying CKO mice/tissues. These findings have prompted the 

search for new avenues in developing novel retinoid therapeutics without RAR-mediated retinoid toxicities, particularly in 

managing neurodegeneration that most likely requires extended periods of intervention. This can be a promising strategy, as 

supported by the success in a) our structural studies revealing essential residues of CRABP1 protein that preferentially engages 

certain specific signaling pathways and b) identifying specific CRABP1-binding (without engaging RARs) compounds that target 

specific signaling pathways in a cell context-dependent manner. It will be of great interest to further characterize and develop 

novel RA-mimetic compounds that can more specifically and potently modulate the exact signaling pathways crucial to specific 

defects in certain neurodegenerative processes. This type of signaling pathway-targeting, “tailored” approach is more likely to 
deliver the desired therapeutic effects with minimal toxicity. 
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