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Abstract 

Background: There are approximately 5.4M Basal Cell (BCC) and Squamous Cell Carcinomas 

(SCC) diagnosed in the US with the numbers expanding each year. Currently, the gold standard 

for skin cancer diagnosis is histopathology, which requires the surgical excision of the tumor 

followed by pathological evaluation of a tissue biopsy. The Three-Dimensional (3D) nature of 

human tissue suggests that Two-Dimensional (2D) cross-sections may be insufficient in some 

cases to represent the complex structure due to sampling bias. There is a need for new techniques 

that can be used to classify skin lesion types and margins noninvasively.  

Methods: We use optical coherence tomography volume scan images and Artificial Intelligence 

(AI) to noninvasively create 3D images of basal cell and squamous cell carcinomas.  

Results: 3D optical coherence tomography images can be broken down into a series of cross 

sections that can be classified as benign or cancerous using convolutional neural network models 

developed in this study. These models can identify cancerous regions as well as clear edges. 

Cancerous regions can also be verified based on visual review of the color-coded images and the 

loss of the green and blue subchannel pixel intensities.  

Conclusion: 3D optical coherence tomography cross-sections of cancerous lesions can be collected 

noninvasively and using AI the skin lesions can be classified as well the clear edges. These images 

may provide a means to speed up treatment and promote better screening of cancer patients, 

especially for older patients who will likely develop more than one cancerous lesion as they age. 
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Introduction 

Melanomas are pigmented skin cancers that are increasingly being diagnosed each year throughout the world. The American 

Cancer Society estimates that nearly 105,000 new cases of invasive melanoma of the skin and over 107,000 new cases of melanoma 

in-situ will be diagnosed in the United States in 2025 [1]. Most melanomas are asymmetrical brown spots or nodular bumps 

greater than 6 mm in diameter with irregular pigmentation. Lesions with distinctive colors such as white, red, slate gray, pink, 

black or blue are commonly seen [2]. A variety of dermoscopic features are associated with melanomas including irregular 

pigment distribution, pigmented finger-like projections arranged asymmetrically, white streaks, blue veils and atypical linear or 

highly convoluted blood vessels [3]. There are many different histologic variants of melanoma and pigmented lesions that are 

similar when viewed with a dermoscope. No specific stain or special technique alone can be used to distinguish between a benign 

nevus and melanoma [4]. Increased Breslow’s thickness and the depth of lesion penetration into the dermis remains the most 
important factors in gaging the severity of melanomas [4]. 
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One study reported that use of noninvasive devices provides high sensitivity when used to detect melanoma [5]. The FotoFinder 

Moleanalyzer Pro is reported to have a sensitivity and specificity like that of expert dermatologists [5]. Classification of 

dermoscopic skin lesion images based on Convolutional Neural Network models (CNNs) is reported to work well in predicting 

melanoma [6]. In comparison, in another study, diagnostic performance of artificial intelligence for histologic melanoma 

recognition was compared to the diagnosis by expert pathologists. It was concluded that the diagnosis was confounded by the 

disagreement among pathologists as to the presence of melanoma [7]. In that study only half (47%) of the melanoma diagnoses 

were unanimously confirmed by all 18 pathologists showing the difficulty in routine diagnosis of this cancer [7].  

 

The diagnosis, interpretation and classification of melanocytic tumors have become more complicated considering that several 

other melanocyte lesions can be confused with melanoma. In addition, different names have been given to associated melanocytic 

lesions described in the literature [8]. One of these lesions is known as a Dysplastic Nevus and is abbreviated as DN. This is a 

nevus with architectural disorder and atypical melanocytes [8]. Despite its name, DN is not considered as a true dysplastic 

precursor or premalignant lesion [8]. DN cytological atypia is characterized by enlargement of nuclei (with varying degrees of 

irregularity), chromatin clumping and hyperchromatism and variably prominent nucleoli [8]. A lack of standardized diagnostic 

terminology makes it challenging to gauge clinical behavior and guide treatment recommendations [9]. It is thought that most 

lesions currently reported as atypical melanocytic proliferations may be benign and that their significance lies in the potential 

pitfall for overdiagnosis of malignant melanoma [10]. The literature regarding atypical melanocytic proliferations highlights the 

potential pitfalls, such as diagnostic disagreement, institutional variations in nomenclature, uncertain biological potential, lack 

of histologic criteria and unclear management recommendations [11]. A lack of standardized diagnostic terminology makes it 

challenging to gauge clinical behavior and guide treatment [12].  

 

Benign melanocytic nevi are the proliferation of uniform melanocytes which occur on the skin after birth. They are initially 

located at the intradermal-epidermal junction and over time tend to migrate into the dermis [13]. Compound nevi identification 

by dermoscopy do not always correlate well with the histopathological diagnosis. Most clinically diagnosed compound nevi are 

found intradermally on histopathology [13].  

 

The purpose of this paper is to conduct a pilot study to evaluate the use of Optical Coherence Tomography (OCT) along with AI 

to classify the differences between melanomas and other melanocytic skin lesions. The results of this pilot study suggest that 

further studies are warranted to evaluate the use of OCT and AI to differentiate melanoma from benign melanocytic lesions. 

 

Methodology 

An OptoScope was used in this study to collect OCT images. It consists of a modified Lumedica OQ 2.0 OCT (Lumedica Inc, 

Durham, NC) as described previously operating at a wavelength of 840 nm collecting 13,000 frames per second. OCT gray-scale 

images were used to classify both normal skin and melanocytic lesions. The images were collected on intact normal skin and 

biopsied pigmented lesions as described previously [14,15]. The pigmented lesions were studied immediately after a biopsy was 

taken and then processed and stained with H&E for histopathology. All images were collected as part of an IRB approved clinical 

study on skin cancers at Summit Health (Berkeley Heights, NJ) after obtaining informed consent from the patients. Clinical 

diagnoses were made by more than one board-certified dermatopathologist after H&E staining and review of the tissue sections 

as part of routine clinical skin excisional protocols. Measurements were made on OCT images of control skin (N=200), melanomas 

(N=106) and 2 atypical melanocytic lesions, a dysplastic nevus and a typical benign nevus. The OptoScope includes a handpiece 

that collects reflected red light from the skin that is connected to an OCT that operates using an I5 computer. All OCT images 

were created by horizontally scanning the cancerous lesion cross sections. The gray scale-scans were color-coded using image J 

as reported previously [14,15]. The OCT gray-scale pixel images were broken into green, blue and red subchannel images using 

a lookup table [14,15]. By breaking up the pixel intensity distribution at each point into low (green), medium (blue) and high 

(red) intensities, it is possible to examine differences in reflection of the different layers of skin and skin lesions. The clinical 

evaluation of the skin required only 2 minutes for analysis of each lesion. Images collected on skin lesions were compared to 

images of normal skin using a Convolutional Neural Network (CNN). 80% of the data was used for model training and 20% for 

testing. The sensitivity, specificity and Area Under the Operating Curve (AUOC) were calculated for CNN models developed 

for each cancer type studied and are listed in Table 1. The sensitivity and specificity of these models ranged between 92 and 100% 

as reported previously [14,15]. All samples evaluated in this study were not used in training the CNN model. 

In this study, a transfer learning-based Convolutional Neural Network (CNN) using the ResNet18 architecture was implemented 
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to classify OCT images of normal skin versus melanoma. The gray-scale images were converted into three-channel inputs to 

match the ResNet18 requirements and data augmentation techniques such as random horizontal flipping, rotation and resizing 

were applied to enhance generalization, while normalization followed ImageNet standards. Using a 5-fold cross-validation 

strategy, to ensure robust performance evaluation, the final classification layer of ResNet18 was modified to output a single node 

for binary classification. The network was trained using the Adam optimizer with Binary Cross-Entropy loss over multiple 

epochs, with the best-performing model saved based on validation accuracy. To provide interpretability, Gradient-weighted 

Class Activation Mapping (Grad-CAM) was employed to highlight the discriminative regions used by the model when 

distinguishing skin lesions from normal skin. Finally, model performance was assessed through test accuracy, confusion 

matrices, sensitivity, specificity and ROC-AUOC analysis, offering both predictive power and clinical relevance. Each unknown 

lesion was compared to normal skin to calculate a probability that the sample was cancerous or similar to normal skin. 

 

Results 

Fig. 1 shows a typical color-coded OCT image of normal skin. Note the stratum corneum in yellow marked by the yellow arrow 

in A, the granulating layers in pink and red (see arrow) and the papillary and basal cell layers shown in blue area. In the green 

subchannel layer shown in B the stratum corneum is seen while in the blue subchannel image the hyporeflective layer is shown 

by a yellow arrow. 

 

 
Figure 1: Color-coded OCT image of normal skin (A) and the green (B), blue (C) and red (D) sub-channels images. The low (B), 

medium (C) and high (D) pixel intensities were determined from a look-up table. Note the stratum corneum in yellow marked 

by the middle yellow arrow in A, the granulating layers in pink  (right arrow) and red and the papillary and basal cell layers 

shown in blue (lowest arrow). In the green subchannel layer shown in B the stratum corneum is seen while in the blue 

subchannel image the hyporeflective layer is shown by an arrow. 

 

Fig. 2 shows a typical color-coded OCT image (A) as well as green (B), blue (C) and red subchannel images (D) of a lesion 

diagnosed by a board-certified dermatopathologist as a melanoma. Note the rough surface of the melanoma due to the presence 

of lesions marked with an arrow in A. The green subchannel disappears at the location of the lesion (see B) which is marked by 

the arrow. The hyporeflective layer is absent possibly due to mutation of the keratin of the intermediate filaments (see arow in 

C). 
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Figure 2: Typical color-coded (A) and subchannel green (B), blue (C) and red (D) images of a melanoma diagnosed by board-

certified dermatopathologists based on histopathology. Arrows indicate the location of the lesion in the different images. 

 

Fig. 3 shows the results of a Convolutional Neural Network (CNN) model comparing gray scale OCT images of melanomas to 

normal skin. The number of samples tested are shown in the boxes. The sensitivity and specificity of the CNN model is highly 

effective in distinguishing melanoma from normal skin as shown in Table 1. 

 

 
Figure 3: Convolutional neural network results distinguishing melanoma (1) from normal skin (0). Note the sensitivity of 

distinguishing melanoma from normal is 100% while the specificity is 100%. Table 1 lists the results from the CNN model 

distinguishing melanoma from normal skin. 
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 Sensitivity Specificity Area Under Operating Curve 

Melanoma 100% 100% 1 

BCC 100% 97.16% 0.99 

SCC 93.33% 43.83% 0.69 

Table 1: Sensitivity, Specificity and Area Under the Operating Curve for CNN Models of differentiating normal skin from 

Melanoma, Basal Cell Carcinoma (BCC) or Squamous Cell Carcinoma (SCC). 

 

Fig. 4 shows typical color-coded and subchannel images of an atypical melanocytic lesion diagnosed by a board-certified 

dermatopathologist. The arrows point to areas where there are groups of cells possibly melanocytes. Table 2 lists the probability 

that the lesion is a melanoma. 

 
Figure 4: Typical color-coded and subchannel images of an atypical melanocytic lesion diagnosed by a board-certified 

dermatopathologist. The arrows point to areas where; there are groups of cells possibly melanocytes. 

 

Fig. 5 is a color-coded subchannel image of a dysplastic nevus. Note the large proliferation of cells at the lesion surface in A and 

in B where the green cellular layer is quite thick there is thick hyporeflective region in C. 

 

 
Figure 5: Typical color-coded and subchannel images of a dysplastic melanocytic lesion diagnosed by a board-certified 

dermatopathologist. Note the cellular proliferation in B demonstrated by the thick green band and the large hyporeflective 
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region in C (black region between top layer of epidermis and the papillary dermis) of a benign lesion. The probability of this 

being a melanoma is given in Table 2. 

 

Fig. 5 is a typical color-coded and subchannel images of a dysplastic melanocytic lesion diagnosed by a board-certified 

dermatopathologist. Note the cellular proliferation in B and the large hyporeflective region in C representative (black region) of 

a benign lesion. The probability of this being a melanoma is only 14.3% as given in Table 2. 

 

Fig. 6 is a typical color-coded image of a nevus (A) and subchannel images including green (B), blue (C) and red (D). Note the 

rete ridges standout at the base of the epidermis compared to normal skin (Fig. 1) (see arrow in B and C) compared to normal 

nevus. Areas with enhanced melanin particles tend to scatter light deeper into the sample due to Mie scattering.  

 

 
Figure 6: Typical color-coded image of a nevus (A) and including green (B), blue (C) and red (D) subchannel images. Note the 

rete ridges stand out compared to normal skin (Fig. 1) in the nevus. Areas with enhanced melanin particles tend to scatter light 

deeper into the sample due to Mie scattering therefore preventing back scattering of the infrared light.  This is why the green 

channel is very faint. 

 

Subject Probability of Normal Skin Probability of Melanoma 

Normal Skin (N = 11) 90.4% {2.6}* 9.6% {2.6} 
Melanoma (N = 8) 7.72% {1.34} 92.82% {1.34} 

Dysplastic Nevus (N=1) 85.7% 14.3% 

Atypical Melanocytic Lesion (N = 2) 100% 0% 

Nevus (N=1) 96% 4.1% 

Table 2: Probability Prediction of Different Lesions Using CNN model with standard deviations shown in brackets. 

 

 

Fig. 7 shows a melanoma where the left half appears like normal skin and the right half is modeled as melanoma. 
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Figure 7: A melanoma with areas of normal skin and a cancerous lesion. This is the lesion shown in Fig. 6. A split screen with 

normal skin on the left and melanoma on the right. By splitting the image into 2 parts the area where the melanoma is found 

can be located.. 

 

Table 3 shows the data on the probability that the lesion is a melanoma is increased by dividing it into two parts based on the 

OCT image. 

 

Subject Probability of Melanoma (Left) Probability of Melanoma (Right) 
Melanoma 1 10.66% 94.43% 

Melanoma 2 16.14% 99.73% 

Table 3: Melanoma split image where ½ of the lesion is modeled as a melanoma and the other half as normal skin. 

 

Discussion 

The ability to noninvasively classify cancerous skin lesions in-vivo in 3D provides additional information that can be used by 

Dermatologists and Pathologists to facilitate lesion identification as well as the treatment of skin cancers. We have previously 

shown that epithelial cell derived skin cancers are characterized by new cancer associated fibroblasts that have resonant 

frequencies that are higher than that of normal epithelial cells (80 Hz versus 50 Hz), new thin blood vessels with resonant 

frequencies of about 130 Hz and fibrous tissue with resonant frequencies between 250 and 260 Hz [17]. These resonant 

frequencies are not seen in normal skin and can be used to differentiate normal skin from skin cancers [17,18]. These changes in 

resonant frequencies are related to changes in the structure and texture of the tissue that can be indirectly derived from analysis 

of the OCT images using CNN models [19,20].  

 

3D reconstructions of melanoma, BCC and SCC skin cancers can be obtained noninvasively using the volume scan app found on 

the OptoScope. The app generates 128 serial cross-sections of each lesion that is visualized and can be analyzed with CNN models 

to classify the lesion type. It can also be used to locate the clear edges of the lesion that appear to be cancer free. The image can 

be split in half and each half analyzed with the CNN separately. In addition to identifying the type and location of a lesion, 

OptoScope images and data may provide a means to identify benign lesions that don’t need to be biopsied or be excised. 
Noninvasive measurements would speed up patient evaluation, improve flow through of patients through the medical office 

and reduce costs of care.  

 

https://doi.org/10.46889/JDR.2025.6317
https://athenaeumpub.com/journal-of-dermatology-research/


8 

https://doi.org/10.46889/JDR.2025.6317                                                                                    https://athenaeumpub.com/journal-of-dermatology-research/ 

 

The use of OCT to classify lesions takes about 2 minutes and can increase patient flow through the Dermatologist’s office. It also 

provides additional information and facilitates identification of the location of the lesion edges as well as the extent of the lesion 

protruding into the dermis. This is useful in identifying difficult cases that may need referral to a plastic surgeon to avoid 

extensive scaring when an excision is made. This also helps a clinician to gauge the width and depth of the lesion which is key 

to planning the extent of treatment that may be needed. It also improves patient flow through a busy office, especially considering 

the increased number of skin cancers occurring throughout the world and the difficulty of scheduling Dermatologist office visits.  

The results shown in this paper indicate that the use of AI in predicting the probability that a lesion is cancerous can be verified 

visually by reviewing the green and blue subchannel images. Loss of the green subchannel image pixel intensity is associated 

with the formation of cellular aggregates in BCC, SCC and melanoma due to Mie scattering of the light deeper into the specimen 

[19,20]. This appears to occur in all epithelial derived cancers of the skin and can be confirmed by CNN model predictions after 

reviewing the subchannel images. The change of blue channel pixel intensities in cancerous lesions is associated with mutations 

in the intermediate filaments that are associated with loss of keratin and increases in the cytokeratin found in BCCs, SCCs and 

melanomas [19,20]. The cancer free edges of the lesions can be verified by both viewing lesion images as well as by CNN model 

predictions. This may provide a means to limit removal of normal skin and may save time during Mohs surgery while waiting 

for the results of histology conducted on frozen sections. In addition, the instrument can be run remotely making it possible to 

collect images in areas where dermatologist visits are difficult to schedule. Dermoscopy and visual inspection are the most widely 

used methods to detect skin cancers [21,22]. However, more advanced noninvasive diagnostic techniques are being developed. 

Some of these methods can be employed remotely and data transferred over the internet. Rapid noninvasive methods are also 

needed to improve the quality of patient skin checks that can be achieved in part through improving the quality of 

teledermatology. 

 

Teledermatology has been used remotely by analyzing camera photos or live video conferences of skin problems along with 

associated clinical histories [23-26]. In the past teledermatology was considered a supplement to a patient’s total care and not a 
replacement for in-person doctor’s visits [23-26].  New techniques such as optical coherence tomography, elastic scattering, 

Raman Spectroscopy, high frequency ultrasound, electrical impedance spectroscopy and reflectance confocal microscopy may 

provide more information on skin subsurface structure [26]. Advances in these technologies for the diagnosis of skin cancer are 

needed to optimize individual patient treatments [26]. Use of OCT and AI may promote the use of teledermatology especially in 

remote regions and locations where Dermatologists are in short supply. Screening for skin cancer is especially important for 

subjects that have blue, green or hazel eye colors and have Fitzgerald skin types I and II. These patients are likely to develop one 

or more skin cancers by the age of 70. Improved screening can be achieved through development of additional telemedicine 

techniques. 

 

Conclusion 

Using noninvasive 3D OCT images of skin lesions with the OptoScope it is possible to identify the location and relative size of 

skin lesions without touching the skin. These 3D images can be broken down into a series of cross sections that can be reviewed 

one by one. Each cross section can be classified as benign or cancerous using Convolutional Neural Network (CNN) models that 

have been developed in this study. These models can identify cancerous regions as well as clear edges. Cancerous regions can 

be verified based on visual review of the color-coded images and the loss of the green and blue subchannel pixel intensities. By 

providing rapid OCT images of skin lesions Dermatologists and Pathologists can work together to eliminate unnecessary 

biopsies and excisions and reduce the need to remove excessive normal skin. These images may provide a means to speed up 

lesion treatment and provide impetus to use topical treatments on smaller lesions. Early lesion noninvasive classification 

techniques may promote better patient screening especially in older patients with blond, green and hazel eye colors who will 

likely have multiple cancerous lesions by the age of 70. 

 

Conflicts of Interest 

FHS is a stockholder and TD is an employee of OptoVibronex. 

 

Authors’ Contributions 

Conceptualization, F.H.S. and T.D.; methodology, F.H.S and H.N.; formal analysis, F.H.S., T.D. and H.N.; investigation, F.H.S. 

and H.N.; data curation, T.D.; writing—original draft preparation, F.H.S. and T.D.; writing—review and editing, F.H.S., T.D., 

H.N.; All authors have read and agreed to the published version of the manuscript. 

https://doi.org/10.46889/JDR.2025.6317
https://athenaeumpub.com/journal-of-dermatology-research/


9 

https://doi.org/10.46889/JDR.2025.6317                                                                                    https://athenaeumpub.com/journal-of-dermatology-research/ 

 

Funding Details 

Partial support for this project was provided by Ben Franklin Tech Partners during 2024-2025. 

 

Acknowledgements 

The authors thank Professor Emrah Bayrak and the Capstone team at Lehigh University composed of Kendalin Flores, Max Tran, 

Ernesto Sanchez Lopez, Nico Babbio and Julia Knox for their assistance in programming the convolutional neural network 

models. 

 

Institutional Review Board Statement 

The protocol was approved by the I.R.B. at Advarra on August 7, 2025, IRB Number CR 006782727. 

 

Informed Consent Statement 

All subjects provided consent. 

 

Data Availability Statement 

Data available at optovibronex.com. 

 

References 

1. International Agency for Research on Cancer. Cancer today fact sheets. Lyon: IARC; 2025. [Last accessed on: December 24, 

2025] https://gco.iarc.fr/today/en/fact-sheets-cancers  

2. American Cancer Society. Key statistics for basal and squamous cell skin cancer. Atlanta: American Cancer Society; 2025. 

[Last accessed on: December 24, 2025]  

https://www.cancer.org/cancer/types/basal-and-squamous-cell-skin-cancer/about/key-statistics.html  

3. GlobeNewswire. Digital biopsy market insights, competitive landscape and forecast report 2024-2032. 2025. [Last accessed 

on: December 24, 2025] 

https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-

Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-

Drive-Market-Growth.html  

4. Negrutiu M, Danescu S, Popa T, Focsan M, Vesa SC, Baican A. Advancements in basal cell carcinoma diagnosis: non-invasive 

imaging and multimodal approach. J Clin Med. 2024;13:39. 

5. Guy GP Jr, Ekwueme DU, Tangka FK, Richardson LC. Melanoma treatment costs: A systematic review of the literature, 1990-

2011. Am J Prev Med. 2012;43(5):537-45. 

6. Veeramani N, Jayaraman P. A promising AI-based super-resolution image reconstruction technique for early diagnosis of 

skin cancer. Sci Rep. 2025;15(1):5084. 

7. Song AH, Williams M, Williamson DFK, Jaume G, Zhang A, Chen B, et al. Weakly supervised AI for efficient analysis of 3D 

pathology samples. arXiv [Preprint]. 2023;2307.14907. 

8. Satheesha TY, Satyanarayana D, Prasad MNG, Dhruve KD. Melanoma is skin deep: A 3D reconstruction technique for 

computerized dermoscopic skin lesion classification. IEEE J Transl Eng Health Med. 2017;5:4300117. 

9. Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A survey of methods for 3D histology reconstruction. Med Image Anal. 

2018;46:73-105. 

10. Kurza A, Müller HH, Kather JN, Schneider L, Bucher TC, Brinker TJ. Three-dimensional reconstruction from 

histopathological sections: A systematic review. Lab Invest. 2024;104:102049. 

11. Tanaka N, Kanatani S, Tomer R, Sahlgren C, Kronqvist P, Kaczynska D, et al. Whole-tissue biopsy phenotyping of three-

dimensional tumours reveals patterns of cancer heterogeneity. Nat Biomed Eng. 2017;1:796-806. 

12. Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. Diagn Pathol. 2023;18(1):109. 

13. McGenity C, Clarke EL, Jennings C. Artificial intelligence in digital pathology: A systematic review and meta-analysis of 

diagnostic test accuracy. NPJ Digit Med. 2024;7:114. 

14. Tawfik OW, Subramanian J, Caughron S, Mana P, Ewing E, Aboudara M, et al. Challenges in pathology specimen processing 

in the new era of precision medicine. Arch Pathol Lab Med. 2022;146(5):603-10. 

15. Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, et al. Towards a general-purpose foundation model for 

https://doi.org/10.46889/JDR.2025.6317
https://athenaeumpub.com/journal-of-dermatology-research/
https://gco.iarc.fr/today/en/fact-sheets-cancers
https://www.cancer.org/cancer/types/basal-and-squamous-cell-skin-cancer/about/key-statistics.html
https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-Drive-Market-Growth.html
https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-Drive-Market-Growth.html
https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-Drive-Market-Growth.html


10 

https://doi.org/10.46889/JDR.2025.6317                                                                                    https://athenaeumpub.com/journal-of-dermatology-research/ 

 

computational pathology. Nat Med. 2024;30(3):850-62. 

16. Silver FH, Deshmukh T. Do tensile and shear forces exerted on cells influence mechanotransduction through stored energy 

considerations? Biocell. 2024;48(4):525-40. 

17. Silver FH, Deshmukh T, Ryan N, Romm A, Nadiminti H. Fingerprinting benign and cancerous skin lesions using vibrational 

optical coherence tomography. Biomolecules. 2022;12:1332. 

18. Silver FH, Kelkar N, Deshmukh T, Horvath I, Shah RG. Mechano-vibrational spectroscopy of tissues and materials using 

vibrational optical coherence tomography. Recent Prog Mater. 2020;2(2):010. 

19. Silver FH, Deshmukh T, Gollipara G, Patel A. Noninvasive screening of basal cell carcinomas using vibrational OCT and 

histopathology. Onco. 2025;5:23. 

20. Silver FH, Deshmukh T, Ritter K, Nadiminti H. Clinical use of vibrational coherence tomography and optical coherence 

tomography to classify skin cancers. Med Res Arch. 2025;13(10). 

21. GlobeNewswire. Digital biopsy market insights, competitive landscape and forecast report 2024-2032. 2025. [Last accessed 

on: December 24, 2025]  

https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-

Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-

Drive-Market-Growth.html  

22. International Agency for Research on Cancer. Cancer today fact sheets [Internet]. Lyon: IARC. 2025. [Last accessed on: 

December 24, 2025]  

https://gco.iarc.fr/today/en/fact-sheets-cancers  

23. Haleem A, Javaid M, Singh RP, Suman R. Telemedicine for healthcare: Capabilities, features, barriers and applications. Sens 

Int. 2021;2:100117. 

24. Reed M, Huang J, Somers M, Hsueh L, Graetz I, Millman A, et al. Telemedicine versus in-person primary care: Treatment 

and follow-up visits. Ann Intern Med. 2023;176(10):1349-57. 

25. Su Z, Li C, Fu H, Wang L, Wu M, Feng X. Development and prospect of telemedicine. Intell Med. 2024;4(1):1-9. 

26. Sud E, Anjankar A. Applications of telemedicine in dermatology. Cureus. 2022;14(8):e27740. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                             

Publish your work in this journal 

Journal of Dermatology Research is an international, peer-reviewed, open access journal publishing original research, reports, editorials, reviews and 
commentaries. All aspects of dermatological health maintenance, preventative measures and disease treatment interventions are addressed within the 
journal. Dermatologists and other researchers are invited to submit their work in the journal. The manuscript submission system is online and journal 
follows a fair peer-review practices. 

Submit your manuscript here: https://athenaeumpub.com/submit-manuscript/  

https://doi.org/10.46889/JDR.2025.6317
https://athenaeumpub.com/journal-of-dermatology-research/
https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-Drive-Market-Growth.html
https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-Drive-Market-Growth.html
https://www.globenewswire.com/news-release/2025/08/11/3130726/28124/en/Digital-Biopsy-Market-Insights-Competitive-Landscape-and-Forecast-Report-2024-2032-Rising-Cancer-Cases-and-Adoption-of-Advanced-Digital-Biopsy-Systems-Drive-Market-Growth.html
https://gco.iarc.fr/today/en/fact-sheets-cancers
https://athenaeumpub.com/journal-of-dermatology-research/
https://athenaeumpub.com/journal-of-dermatology-research/
https://athenaeumpub.com/submit-manuscript/

