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Abstract

Background: There are approximately 5.4M Basal Cell (BCC) and Squamous Cell Carcinomas
(5CC) diagnosed in the US with the numbers expanding each year. Currently, the gold standard
for skin cancer diagnosis is histopathology, which requires the surgical excision of the tumor
followed by pathological evaluation of a tissue biopsy. The Three-Dimensional (3D) nature of
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human tissue suggests that Two-Dimensional (2D) cross-sections may be insufficient in some
cases to represent the complex structure due to sampling bias. There is a need for new techniques

that can be used to classify skin lesion types and margins noninvasively.

Images and Artificial Intelligence
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Methods: We use optical coherence tomography volume scan images and Artificial Intelligence

(Al) to noninvasively create 3D images of basal cell and squamous cell carcinomas.

Results: 3D optical coherence tomography images can be broken down into a series of cross
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sections that can be classified as benign or cancerous using convolutional neural network models
developed in this study. These models can identify cancerous regions as well as clear edges.
Cancerous regions can also be verified based on visual review of the color-coded images and the
loss of the green and blue subchannel pixel intensities.

Conclusion: 3D optical coherence tomography cross-sections of cancerous lesions can be collected
noninvasively and using Al the skin lesions can be classified as well the clear edges. These images
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may provide a means to speed up treatment and promote better screening of cancer patients,
especially for older patients who will likely develop more than one cancerous lesion as they age.

Keywords: Skin Cancer; Basal Cell Carcinoma; Squamous Cell Carcinoma; Melanoma; Optical
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Introduction

Melanomas are pigmented skin cancers that are increasingly being diagnosed each year throughout the world. The American
Cancer Society estimates that nearly 105,000 new cases of invasive melanoma of the skin and over 107,000 new cases of melanoma
in-situ will be diagnosed in the United States in 2025 [1]. Most melanomas are asymmetrical brown spots or nodular bumps
greater than 6 mm in diameter with irregular pigmentation. Lesions with distinctive colors such as white, red, slate gray, pink,
black or blue are commonly seen [2]. A variety of dermoscopic features are associated with melanomas including irregular
pigment distribution, pigmented finger-like projections arranged asymmetrically, white streaks, blue veils and atypical linear or
highly convoluted blood vessels [3]. There are many different histologic variants of melanoma and pigmented lesions that are
similar when viewed with a dermoscope. No specific stain or special technique alone can be used to distinguish between a benign
nevus and melanoma [4]. Increased Breslow’s thickness and the depth of lesion penetration into the dermis remains the most
important factors in gaging the severity of melanomas [4].
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One study reported that use of noninvasive devices provides high sensitivity when used to detect melanoma [5]. The FotoFinder
Moleanalyzer Pro is reported to have a sensitivity and specificity like that of expert dermatologists [5]. Classification of
dermoscopic skin lesion images based on Convolutional Neural Network models (CNNSs) is reported to work well in predicting
melanoma [6]. In comparison, in another study, diagnostic performance of artificial intelligence for histologic melanoma
recognition was compared to the diagnosis by expert pathologists. It was concluded that the diagnosis was confounded by the
disagreement among pathologists as to the presence of melanoma [7]. In that study only half (47%) of the melanoma diagnoses
were unanimously confirmed by all 18 pathologists showing the difficulty in routine diagnosis of this cancer [7].

The diagnosis, interpretation and classification of melanocytic tumors have become more complicated considering that several
other melanocyte lesions can be confused with melanoma. In addition, different names have been given to associated melanocytic
lesions described in the literature [8]. One of these lesions is known as a Dysplastic Nevus and is abbreviated as DN. This is a
nevus with architectural disorder and atypical melanocytes [8]. Despite its name, DN is not considered as a true dysplastic
precursor or premalignant lesion [8]. DN cytological atypia is characterized by enlargement of nuclei (with varying degrees of
irregularity), chromatin clumping and hyperchromatism and variably prominent nucleoli [8]. A lack of standardized diagnostic
terminology makes it challenging to gauge clinical behavior and guide treatment recommendations [9]. It is thought that most
lesions currently reported as atypical melanocytic proliferations may be benign and that their significance lies in the potential
pitfall for overdiagnosis of malignant melanoma [10]. The literature regarding atypical melanocytic proliferations highlights the
potential pitfalls, such as diagnostic disagreement, institutional variations in nomenclature, uncertain biological potential, lack
of histologic criteria and unclear management recommendations [11]. A lack of standardized diagnostic terminology makes it
challenging to gauge clinical behavior and guide treatment [12].

Benign melanocytic nevi are the proliferation of uniform melanocytes which occur on the skin after birth. They are initially
located at the intradermal-epidermal junction and over time tend to migrate into the dermis [13]. Compound nevi identification
by dermoscopy do not always correlate well with the histopathological diagnosis. Most clinically diagnosed compound nevi are
found intradermally on histopathology [13].

The purpose of this paper is to conduct a pilot study to evaluate the use of Optical Coherence Tomography (OCT) along with Al
to classify the differences between melanomas and other melanocytic skin lesions. The results of this pilot study suggest that
further studies are warranted to evaluate the use of OCT and Al to differentiate melanoma from benign melanocytic lesions.

Methodology

An OptoScope was used in this study to collect OCT images. It consists of a modified Lumedica OQ 2.0 OCT (Lumedica Inc,
Durham, NC) as described previously operating at a wavelength of 840 nm collecting 13,000 frames per second. OCT gray-scale
images were used to classify both normal skin and melanocytic lesions. The images were collected on intact normal skin and
biopsied pigmented lesions as described previously [14,15]. The pigmented lesions were studied immediately after a biopsy was
taken and then processed and stained with H&E for histopathology. All images were collected as part of an IRB approved clinical
study on skin cancers at Summit Health (Berkeley Heights, NJ) after obtaining informed consent from the patients. Clinical
diagnoses were made by more than one board-certified dermatopathologist after H&E staining and review of the tissue sections
as part of routine clinical skin excisional protocols. Measurements were made on OCT images of control skin (N=200), melanomas
(N=106) and 2 atypical melanocytic lesions, a dysplastic nevus and a typical benign nevus. The OptoScope includes a handpiece
that collects reflected red light from the skin that is connected to an OCT that operates using an I5 computer. All OCT images
were created by horizontally scanning the cancerous lesion cross sections. The gray scale-scans were color-coded using image J
as reported previously [14,15]. The OCT gray-scale pixel images were broken into green, blue and red subchannel images using
a lookup table [14,15]. By breaking up the pixel intensity distribution at each point into low (green), medium (blue) and high
(red) intensities, it is possible to examine differences in reflection of the different layers of skin and skin lesions. The clinical
evaluation of the skin required only 2 minutes for analysis of each lesion. Images collected on skin lesions were compared to
images of normal skin using a Convolutional Neural Network (CNN). 80% of the data was used for model training and 20% for
testing. The sensitivity, specificity and Area Under the Operating Curve (AUOC) were calculated for CNN models developed
for each cancer type studied and are listed in Table 1. The sensitivity and specificity of these models ranged between 92 and 100%
as reported previously [14,15]. All samples evaluated in this study were not used in training the CNN model.

In this study, a transfer learning-based Convolutional Neural Network (CNN) using the ResNet18 architecture was implemented
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to classify OCT images of normal skin versus melanoma. The gray-scale images were converted into three-channel inputs to
match the ResNet18 requirements and data augmentation techniques such as random horizontal flipping, rotation and resizing
were applied to enhance generalization, while normalization followed ImageNet standards. Using a 5-fold cross-validation
strategy, to ensure robust performance evaluation, the final classification layer of ResNet18 was modified to output a single node
for binary classification. The network was trained using the Adam optimizer with Binary Cross-Entropy loss over multiple
epochs, with the best-performing model saved based on validation accuracy. To provide interpretability, Gradient-weighted
Class Activation Mapping (Grad-CAM) was employed to highlight the discriminative regions used by the model when
distinguishing skin lesions from normal skin. Finally, model performance was assessed through test accuracy, confusion
matrices, sensitivity, specificity and ROC-AUOC analysis, offering both predictive power and clinical relevance. Each unknown
lesion was compared to normal skin to calculate a probability that the sample was cancerous or similar to normal skin.

Results

Fig. 1 shows a typical color-coded OCT image of normal skin. Note the stratum corneum in yellow marked by the yellow arrow
in A, the granulating layers in pink and red (see arrow) and the papillary and basal cell layers shown in blue area. In the green
subchannel layer shown in B the stratum corneum is seen while in the blue subchannel image the hyporeflective layer is shown
by a yellow arrow.

Figure 1: Color-coded OCT image of normal skin (A) and the green (B), blue (C) and red (D) sub-channels images. The low (B),
medium (C) and high (D) pixel intensities were determined from a look-up table. Note the stratum corneum in yellow marked
by the middle yellow arrow in A, the granulating layers in pink (right arrow) and red and the papillary and basal cell layers
shown in blue (lowest arrow). In the green subchannel layer shown in B the stratum corneum is seen while in the blue
subchannel image the hyporeflective layer is shown by an arrow.

Fig. 2 shows a typical color-coded OCT image (A) as well as green (B), blue (C) and red subchannel images (D) of a lesion
diagnosed by a board-certified dermatopathologist as a melanoma. Note the rough surface of the melanoma due to the presence
of lesions marked with an arrow in A. The green subchannel disappears at the location of the lesion (see B) which is marked by
the arrow. The hyporeflective layer is absent possibly due to mutation of the keratin of the intermediate filaments (see arow in
Q).
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Figure 2: Typical color-coded (A) and subchannel green (B), blue (C) and red (D) images of a melanoma diagnosed by board-
certified dermatopathologists based on histopathology. Arrows indicate the location of the lesion in the different images.

Fig. 3 shows the results of a Convolutional Neural Network (CNN) model comparing gray scale OCT images of melanomas to

normal skin. The number of samples tested are shown in the boxes. The sensitivity and specificity of the CNN model is highly
effective in distinguishing melanoma from normal skin as shown in Table 1.

Confusion Matrix

Class 0

True Labels

Class 1

Class 0 Class 1
Predicted Labels

Figure 3: Convolutional neural network results distinguishing melanoma (1) from normal skin (0). Note the sensitivity of
distinguishing melanoma from normal is 100% while the specificity is 100%. Table 1 lists the results from the CNN model
distinguishing melanoma from normal skin.
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Sensitivity Specificity | Area Under Operating Curve
Melanoma 100% 100% 1
BCC 100% 97.16% 0.99
SCC 93.33% 43.83% 0.69

Table 1: Sensitivity, Specificity and Area Under the Operating Curve for CNN Models of differentiating normal skin from
Melanoma, Basal Cell Carcinoma (BCC) or Squamous Cell Carcinoma (SCC).

Fig. 4 shows typical color-coded and subchannel images of an atypical melanocytic lesion diagnosed by a board-certified
dermatopathologist. The arrows point to areas where there are groups of cells possibly melanocytes. Table 2 lists the probability
that the lesion is a melanoma.

Figure 4: Typical color-coded and subchannel images of an atypical melanocytic lesion diagnosed by a board-certified
dermatopathologist. The arrows point to areas where; there are groups of cells possibly melanocytes.

Fig. 5 is a color-coded subchannel image of a dysplastic nevus. Note the large proliferation of cells at the lesion surface in A and
in B where the green cellular layer is quite thick there is thick hyporeflective region in C.

Figure 5: Typical color-coded and subchannel images of a dysplastic melanocytic lesion diagnosed by a board-certified
dermatopathologist. Note the cellular proliferation in B demonstrated by the thick green band and the large hyporeflective
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region in C (black region between top layer of epidermis and the papillary dermis) of a benign lesion. The probability of this
being a melanoma is given in Table 2.

Fig. 5 is a typical color-coded and subchannel images of a dysplastic melanocytic lesion diagnosed by a board-certified
dermatopathologist. Note the cellular proliferation in B and the large hyporeflective region in C representative (black region) of
a benign lesion. The probability of this being a melanoma is only 14.3% as given in Table 2.

Fig. 6 is a typical color-coded image of a nevus (A) and subchannel images including green (B), blue (C) and red (D). Note the
rete ridges standout at the base of the epidermis compared to normal skin (Fig. 1) (see arrow in B and C) compared to normal
nevus. Areas with enhanced melanin particles tend to scatter light deeper into the sample due to Mie scattering.

Figure 6: Typical color-coded image of a nevus (A) and including green (B), blue (C) and red (D) subchannel images. Note the
rete ridges stand out compared to normal skin (Fig. 1) in the nevus. Areas with enhanced melanin particles tend to scatter light
deeper into the sample due to Mie scattering therefore preventing back scattering of the infrared light. This is why the green
channel is very faint.

Subject Probability of Normal Skin Probability of Melanoma
Normal Skin (N = 11) 90.4% {2.6}* 9.6% {2.6}
Melanoma (N = 8) 7.72% {1.34} 92.82% {1.34}
Dysplastic Nevus (N=1) 85.7% 14.3%
Atypical Melanocytic Lesion (N = 2) 100% 0%
Nevus (N=1) 96% 4.1%

Table 2: Probability Prediction of Different Lesions Using CNN model with standard deviations shown in brackets.

Fig. 7 shows a melanoma where the left half appears like normal skin and the right half is modeled as melanoma.
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Figure 7: A melanoma with areas of normal skin and a cancerous lesion. This is the lesion shown in Fig. 6. A split screen with
normal skin on the left and melanoma on the right. By splitting the image into 2 parts the area where the melanoma is found
can be located..

Table 3 shows the data on the probability that the lesion is a melanoma is increased by dividing it into two parts based on the
OCT image.

Subject Probability of Melanoma (Left) Probability of Melanoma (Right)
Melanoma 1 10.66% 94.43%
Melanoma 2 16.14% 99.73%

Table 3: Melanoma split image where %2 of the lesion is modeled as a melanoma and the other half as normal skin.

Discussion

The ability to noninvasively classify cancerous skin lesions in-vivo in 3D provides additional information that can be used by
Dermatologists and Pathologists to facilitate lesion identification as well as the treatment of skin cancers. We have previously
shown that epithelial cell derived skin cancers are characterized by new cancer associated fibroblasts that have resonant
frequencies that are higher than that of normal epithelial cells (80 Hz versus 50 Hz), new thin blood vessels with resonant
frequencies of about 130 Hz and fibrous tissue with resonant frequencies between 250 and 260 Hz [17]. These resonant
frequencies are not seen in normal skin and can be used to differentiate normal skin from skin cancers [17,18]. These changes in
resonant frequencies are related to changes in the structure and texture of the tissue that can be indirectly derived from analysis
of the OCT images using CNN models [19,20].

3D reconstructions of melanoma, BCC and SCC skin cancers can be obtained noninvasively using the volume scan app found on
the OptoScope. The app generates 128 serial cross-sections of each lesion that is visualized and can be analyzed with CNN models
to classify the lesion type. It can also be used to locate the clear edges of the lesion that appear to be cancer free. The image can
be split in half and each half analyzed with the CNN separately. In addition to identifying the type and location of a lesion,
OptoScope images and data may provide a means to identify benign lesions that don’t need to be biopsied or be excised.
Noninvasive measurements would speed up patient evaluation, improve flow through of patients through the medical office
and reduce costs of care.
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The use of OCT to classify lesions takes about 2 minutes and can increase patient flow through the Dermatologist’s office. It also
provides additional information and facilitates identification of the location of the lesion edges as well as the extent of the lesion
protruding into the dermis. This is useful in identifying difficult cases that may need referral to a plastic surgeon to avoid
extensive scaring when an excision is made. This also helps a clinician to gauge the width and depth of the lesion which is key
to planning the extent of treatment that may be needed. It also improves patient flow through a busy office, especially considering
the increased number of skin cancers occurring throughout the world and the difficulty of scheduling Dermatologist office visits.
The results shown in this paper indicate that the use of Al in predicting the probability that a lesion is cancerous can be verified
visually by reviewing the green and blue subchannel images. Loss of the green subchannel image pixel intensity is associated
with the formation of cellular aggregates in BCC, SCC and melanoma due to Mie scattering of the light deeper into the specimen
[19,20]. This appears to occur in all epithelial derived cancers of the skin and can be confirmed by CNN model predictions after
reviewing the subchannel images. The change of blue channel pixel intensities in cancerous lesions is associated with mutations
in the intermediate filaments that are associated with loss of keratin and increases in the cytokeratin found in BCCs, SCCs and
melanomas [19,20]. The cancer free edges of the lesions can be verified by both viewing lesion images as well as by CNN model
predictions. This may provide a means to limit removal of normal skin and may save time during Mohs surgery while waiting
for the results of histology conducted on frozen sections. In addition, the instrument can be run remotely making it possible to
collectimages in areas where dermatologist visits are difficult to schedule. Dermoscopy and visual inspection are the most widely
used methods to detect skin cancers [21,22]. However, more advanced noninvasive diagnostic techniques are being developed.
Some of these methods can be employed remotely and data transferred over the internet. Rapid noninvasive methods are also
needed to improve the quality of patient skin checks that can be achieved in part through improving the quality of
teledermatology.

Teledermatology has been used remotely by analyzing camera photos or live video conferences of skin problems along with
associated clinical histories [23-26]. In the past teledermatology was considered a supplement to a patient’s total care and not a
replacement for in-person doctor’s visits [23-26]. New techniques such as optical coherence tomography, elastic scattering,
Raman Spectroscopy, high frequency ultrasound, electrical impedance spectroscopy and reflectance confocal microscopy may
provide more information on skin subsurface structure [26]. Advances in these technologies for the diagnosis of skin cancer are
needed to optimize individual patient treatments [26]. Use of OCT and Al may promote the use of teledermatology especially in
remote regions and locations where Dermatologists are in short supply. Screening for skin cancer is especially important for
subjects that have blue, green or hazel eye colors and have Fitzgerald skin types I and II. These patients are likely to develop one
or more skin cancers by the age of 70. Improved screening can be achieved through development of additional telemedicine
techniques.

Conclusion

Using noninvasive 3D OCT images of skin lesions with the OptoScope it is possible to identify the location and relative size of
skin lesions without touching the skin. These 3D images can be broken down into a series of cross sections that can be reviewed
one by one. Each cross section can be classified as benign or cancerous using Convolutional Neural Network (CNN) models that
have been developed in this study. These models can identify cancerous regions as well as clear edges. Cancerous regions can
be verified based on visual review of the color-coded images and the loss of the green and blue subchannel pixel intensities. By
providing rapid OCT images of skin lesions Dermatologists and Pathologists can work together to eliminate unnecessary
biopsies and excisions and reduce the need to remove excessive normal skin. These images may provide a means to speed up
lesion treatment and provide impetus to use topical treatments on smaller lesions. Early lesion noninvasive classification
techniques may promote better patient screening especially in older patients with blond, green and hazel eye colors who will
likely have multiple cancerous lesions by the age of 70.
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