

Research Article

Comparison of the Efficacy Between the Combination of Herbal Extracts and Silicone Derivative VS the Combination of Herbal Extracts, Silicone Derivative and Sunscreen in Reducing Scar Development at Donor Site of the Split Thickness Skin Graft

Pitawan Rachata¹, Apirag Chuangsawanich^{2*}, Gulradar Maipeng²

¹Mae Fah Luang University Medical Center Hospital, Mae Fah Luang University, Chiangrai, Thailand

²Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

*Correspondence author: Apirag Chuangsawanich, MD, Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Email: apirag@gmail.com

Abstract

Background: To compare the efficacy between the combination of herbal extracts and silicone derivative VS the combination of herbal extracts, silicone derivative and sunscreen in reducing scar development at the split-thickness skin graft donor site and also the different between the two treatment groups and placebo.

Methods: A prospective randomized double-blind control study to compare efficacy between the combination of herbal extracts and silicone derivative (Group I) VS the combination of herbal extracts, silicone derivative and sunscreen (Group II) VS placebo (Group III) in reducing scar development at the split-thickness skin graft donor site within 1 month after complete epithelialization. Scar assessments using the Vancouver Scar Scale (VSS) and Cutometer® (The Multiprobe Adapter System Cutometer Dual MPA580) were taken 4, 8, 16 and 24 weeks postoperatively.

Results: Of the 12 patients, 8 were enrolled, total 18 split-thickness skin graft donor sites were evaluated in this study. There was statistically significant lower in itching parameter of VSS between treatment groups compared to the placebo group after 8 weeks of treatment; Group I VS Group III ($p = 0.003, 0.002, 0.002$ at 8, 16, 24 weeks, respectively), Group II VS Group III ($p = 0.003, 0.002, 0.002$ at 8, 16, 24 weeks, respectively). After 24 weeks of treatment, there was statistically significant lower erythema index in Group II when compare to Group III (359.09 VS 378.40, $p = 0.004$). There was statistically significant lower melanin index in both treatment groups when compared to placebo group; Group I VS Group III (317.80 VS 341.600, $p = 0.013$) and Group II VS Group III (316.19 VS 341.60, $p = 0.028$). There was no statistically significant different in pliability index between groups.

Conclusion: The results from this study confirmed that the combination of herbal extracts and silicone derivative with or without sunscreen could reduce scar itching and these combinations might improve scar pigmentation and tend to reduce scar erythema.

Keywords: Herbal Extracts Gel; Onion Extract; Silicone Delivertive; Sunscreen; Split-Thickness Skin Graft; Donor Site

Introduction

Skin grafting is a very common procedure in plastic surgery. Split-thickness skin graft donor site is usually expected to heal like any abrasions, unnoticeable scar. However, donor site problems such as hypertrophic, keloid, hyperpigment or hypopigment scar are not uncommon. Dark-skinned individuals have higher susceptibility to develop hypertrophic and keloid scar, with an incidence of 3 to 5 times higher in Asians compared to Caucasians [1,2]. The risk of hyperpigmented scar in Asians is also common especially in Fitzpatrick skin types III to VI [3]. For the donor site of split-thickness skin graft, the incidence of hypertrophic scar

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

in Indian patient was reported as high as 94% after 2 months follow up⁴ and another study in South eastern Nigeria patient reported the incidence of 4% of hypertrophic scar 96% of hyperpigmented scar and 4% of hypertrophic scar in split-thickness skin graft donor site after 6 months follow up [4,5]. Recent reports have introduced the use of herbal extracts, Quercetin from onion extract, in scar prevention. The combination of herbal extracts and silicone derivative in gel preparation may also have synergistic effects in scar improvement [6-9].

However, scar hyperpigmentation is still the major problem in Asian. Sun protection factor 30 has ultraviolet B prevention effect, which can reduce melanogenesis. Therefore, we conduct a prospective, randomized, double-blinded study to compare the efficacy between the combination of herbal extracts and silicone derivative and the combination of herbal extracts, silicone derivative and sunscreen in reducing scar development at the split-thickness skin graft donor site.

Materials and Methods

The study was conducted at the outpatient unit, Division of Plastic surgery, Department of Surgery, Siriraj Hospital, Mahidol University, Thailand, with the approval from the university Institutional Review Board (IRB). The research protocol conformed to the guidelines of the Helsinki Declaration and informed consent was obtained from subjects prior to enrollment. Patients who underwent split-thickness skin graft procedures at Siriraj Hospital, Mahidol University between May - September 2016 were included in this study. All skin graft procedures were performed by plastic surgeons. Inclusion criteria were: patient's age \geq 18 years old, donor site of STSG area \geq 25 cm². Exclusion criteria were: patient in intensive care unit, patient who has a history of allergy to the substance in the study and patient who lost follow up or poor compliance (apply products < 5 days in a week). The studied groups were Group I (the combination of herbal extracts, silicone derivative), Group II (the combination of herbal extracts, silicone derivative and SPF 30) and Group III (placebo). These topical treatments and placebo were prepared as gel paste in the same type of containers, then the containers were labeled as gel paste No.1, No.2, No. 3 by randomized method. Within 1 month after donor site was complete epithelialization, it was divided into 3 parts equally by plastic template and labeled as area No.1, No.2 and No. 3 to applied gel paste No.1, No.2 and No.3 (Fig. 1). The patients were advised to apply all gels with the plastic template on twice daily. No other treatments or skin care were applied on the wound.

The scars were assessed with the Vancouver Scar Scale by blinded OPD surgeons (Table 1). Using Cutometer® MPA 580 (The Multiprobe Adapter System Cutometer Dual MPA580) for erythematous index, pigmentation index and pliability index evaluations by one blinded experienced nurse at 4, 8, 16 and 24 weeks (Fig. 2). All statistical analyses were performed using SPSS statistical software v18.0 (SPSS, Inc., Chicago, IL, USA). Each variable of VSS was analyzed with Friedman's test. Melanin index, erythema index and pliability index were analyzed with repeated measure ANOVA. The p-value was adjusted by the Bonferroni method, p-value $<$ 0.05 was considered statistically significant.

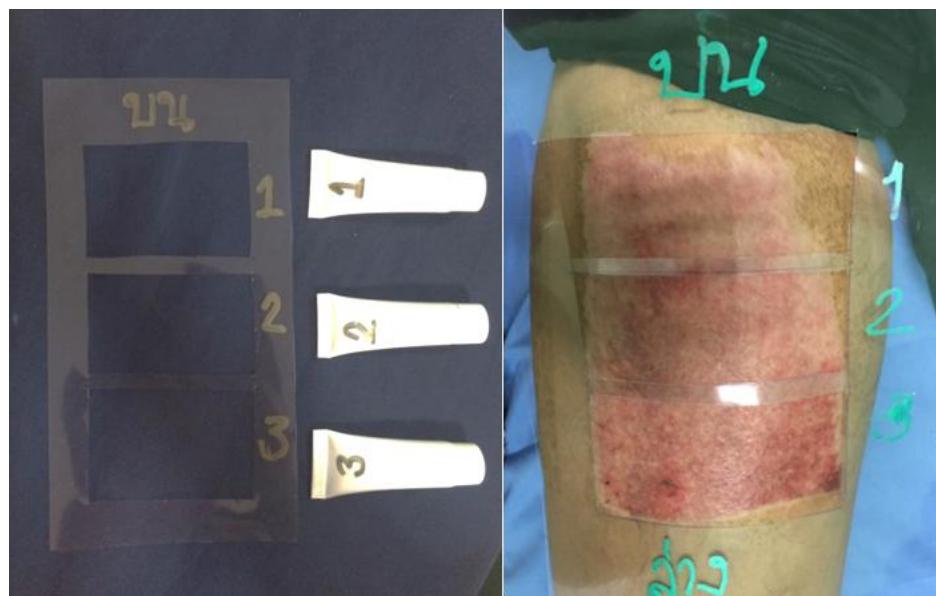


Figure 1: Plastic template for gel application.

Pigmentation	0 = normal, 1 = hypopigmented, 2 = mixed, 3 = hyperpigmented.
Vascularity	0 = normal, 1 = pink, 2 = red, 3 = purple.
Pliability	0 = normal, 1 = supple/ flexible, 2 = yielding to pressure, 3 = firm/ inflexible, 4 = bandina/rope like, 5 = contracture.
Height	0 = flat, 1 = > 2 mm, 2 = 2-5 mm, 3 = > 5 mm
Pain	0 = none, 1 = occasional, 2 = require medication.
Itching	0 = none, 1 = occasional, 2 = require medication.

Table 1: The Vancouver Scar Scale (VSS).

Results

Of the 12 patients, 8 were enrolled, total 18 split-thickness skin graft donor sites were evaluated in this study. Mean age was 31 years old. Fitzpatrick's skin type III was 25% (2/8) and type IV was 75% (6/8). All patients regularly applied the study gel pastes. There was statistically lower in itching parameter of VSS between treatment groups compared to the placebo group after 8 weeks of treatment; Group I VS Group III ($p = 0.003, 0.002, 0.002$ at 8, 16, 24 weeks, respectively), Group II VS Group III ($p = 0.003, 0.002, 0.002$ at 8, 16, 24 weeks, respectively) but there was no significantly different between Group I and Group II. There was no statistically significant different between groups in other parameters of VSS. After 24 weeks of treatment, there was statistically significant lower erythema index in Group II when compared to Group III (359.09 VS 378.40, $p = 0.004$), but no different between Group I VS Group II (367.15 VS 359.09, $p = 0.386$) and Gr.I VS Gr.III (367.15 VS 378.40, $p = 0.079$) (Fig. 3). There was statistically significant lower melanin index in both treatment groups when compared to placebo group; Group I VS Group III (317.80 VS 341.600, $p = 0.013$) and Group II VS Group III (316.19 VS 341.60, $p = 0.028$) but no different between Group I and Group II (317.80 VS 316.19, $p = 0.868$) (Fig. 4). There was no statistically significant different in pliability index between groups (Fig. 5). No adverse effects from gel pastes have been reported.

Figure 2: The healed donor site was divided equally into 3 areas with plastic template. Upper: Placebo (Gr. III), Middle: the combined herbal extracts and silicone derivative (Gr. I), Lower: the combined herbal extracts and silicone derivative +SPF 30 (Gr. II). Pictures show wound at different time of follow up.

Discussion

Many literature reviews showed that silicone gel-based therapy is one of the effective methods and it is recommended for prevention of hypertrophic and keloid scar formation in high-risk patients [10,11]. The risk ratio of silicone sheet in reducing hypertrophic scar formation in Asians is 0.46 [12]. The silicone gel is the other form of silicone that have equal effectiveness as silicone gel sheet. Previous studies showed benefit of the combined herbal extracts and silicone derivative in reducing pain and itching of the scar [3-6].

Quercetin (Allium cepa extract) is also known as onion extract. It has been proven for antiinflammatory, antihistamine, antibacterial and collagen rearrange-ment [13-15]. Asiaticoside (Centella asiatica) Using a rabbit ear model, Ju-Lin, et al., reported that asiaticoside could alleviate scarring by decreasing transform growth factor beta-1 expression and regulation of collagen synthesis [16]. *In-vitro* study, Asiaticoside also inhibit keloid fibroblast proliferation [17,18]. Aloe vera (Aloe vera barbadensis) has been used for many indications for long time. There are many study reports it promotes wound healing by enhancing epithelialization, enhance blood flow in dermis an anti-inflammatory effect [19-22]. Aloe vera has a moisturizing effect and reduce pain and itching during scar formation. Kanzinol F (Broussonetia papyrifera) is one of the active agents from paper mulberry It has been proven for antioxidants effect and Tyrosinase inhibitory effect which result in reduction of hyperpigmentation [23,24]. Xyloglucan (Tamarindus indica) enhance epithelialization and remodelling in wound healing and anti-antiinflammatory effect [25]. Allantoin (Symohytum officinale) provides properties for stimulating epithelialization, collagen rearrangement and moisturizing effect [26]. Cybele®scagel (Bangkok Botanica, Bangkok, Thailand) is a gel preparation product compose of 12% allium cepa, 1% allantoin, asiaticoside, aloe vera extract, kazino F, tamarind extract and Silanols which is a silicone derivitives and has a moisturizing effect, decrease skin vapourization and inhibitory of collagen over-production [27-29]. The results from this study confirm that the combined herbal extracts and silicone derivative could reduce itching score. The effect of antimelanogenesis of SPF 30 in this study show no diffent between two treatment groups may be because the area of donor site was concealed in sun protection area. The limitation of this study was small number of sample size.

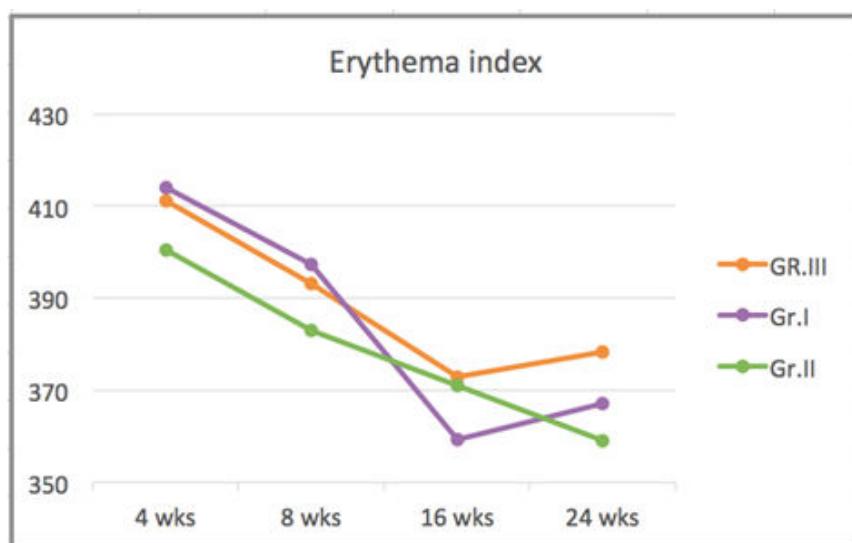


Figure 3: Erythematous index.

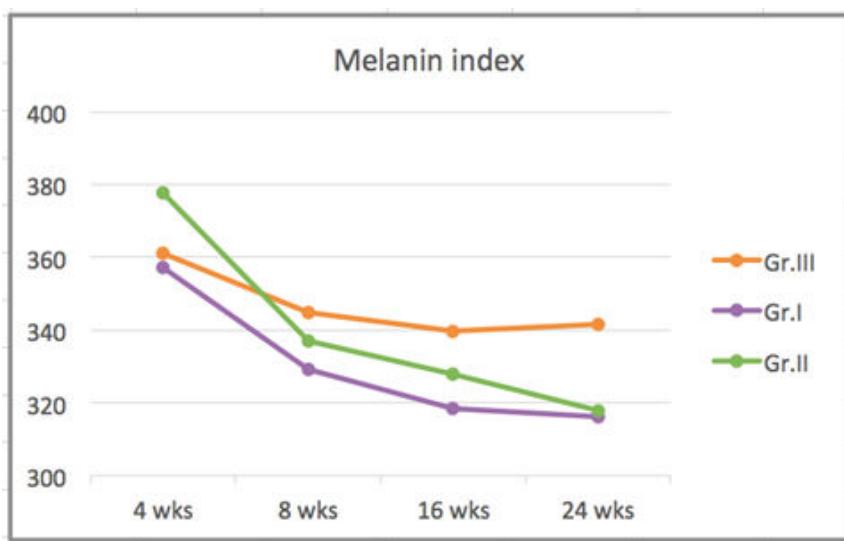


Figure 4: Melanin index.

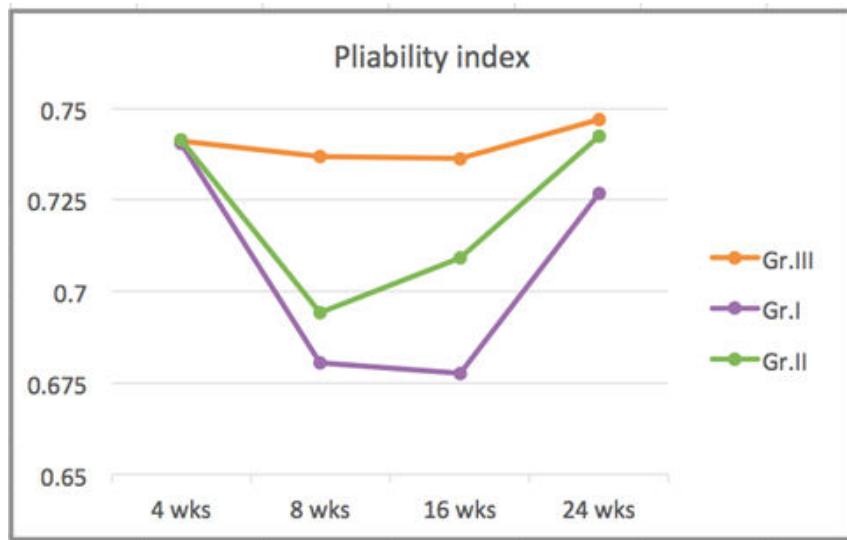


Figure 5: Pliability index.

Conclusion

The results from this study confirmed that the combination of herbal extracts and silicone derivative with or without sunscreen can reduce scar itching and proved that this combination may improve scar pigmentation and tend to reduce scar erythema.

Conflicts of Interest

The authors declare no conflict of interest in this paper.

Funding

The authors received no financial support for this research.

Acknowledgement

The studied products and placebo were supported by Bangkok Botanica Co., Ltd., the authors declare no conflict of interest.

References

1. Chittoria RK, Padi TR. A prospective, randomized, placebo-controlled, double-blind study of silicone gel in prevention of hypertrophic scar at donor site of skin grafting. *J Cutan Aesthet Surg.* 2013;6(1):12-6.
2. Rivera AE. Acne scarring: a review and current treatment modalities. *J Am Acad Dermatol.* 2008;59(4):659-76.
3. Tulandi T, Al-Sannan B, Akbar G, Ziegler C, Miner L. Prospective study of intraabdominal adhesions among women of different races with or without keloids. *Am J Obstet Gynecol.* 2011;204(2):132.
4. Otene CI, Olaitan PB, Ogbonnaya IS, Nnabuko RE. Donor site morbidity following harvest of split-thickness skin grafts in South Eastern Nigeria. *J West Afr Coll Surg.* 2011;1(3):85-94.
5. Chanprapaph K, Tanrattanakorn S, Wattanakrai P, Wongkitisophon P, Vachiramon V. Effectiveness of onion extract gel on surgical scars in Asians. *Dermatol Res Pract.* 2012;2012:212945.
6. Jenwitheesuk K, Surakunprapha P, Jenwitheesuk S, Kuptniratsaikul V. Role of silicone derivative plus onion extract gel in presternal hypertrophic scar protection: A prospective randomized, double-blinded, controlled trial. *Int Wound J.* 2012;9(4):397-402.
7. Muangman P, Aramwit P, Palapinyo S, Opasanon S, Chuangsawanich A. Efficacy of the combination of herbal extracts and a silicone derivative in the treatment of hypertrophic scar formation after burn injury. *Afr J Pharm Pharmacol.* 2011;5(4):442-6.
8. Chuangsawanich A, Arunakul S, Kamnerdnakta S. The efficacy of combined herbal extracts gel in reducing scar development at a split-thickness skin graft donor site. *Aesthetic Plast Surg.* 2013;37(4):770-7.
9. O'Brien L, Jones DJ. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. *Cochrane Database Syst Rev.* 2013;(9):CD003826.

10. Gold MH, McGuire M, Mustoe TA. Updated international clinical recommendations on scar management: Part 2 - algorithms for scar prevention and treatment. *Dermatol Surg*. 2014;40(8):825-31.
11. Kim S, Choi TH, Liu W, Ogawa R, Suh JS, Mustoe TA. Update on scar management: Guidelines for treating Asian patients. *Plast Reconstr Surg*. 2013;132(6):1580-9.
12. Breu W, Dorsch W. *Allium cepa L.* (onion): Chemistry analysis and pharmacology. In: Wager H, Farnsworth NR, editors. *Economic and medicinal plant research*. New York: Academic Press; 1994;6:115-47.
13. Draelos ZD. The ability of onion extract gel to improve the cosmetic appearance of postsurgical scars. *J Cosmet Dermatol*. 2008;7(2):101-4.
14. Augusti K. Therapeutic values of onion (*Allium cepa L.*) and garlic (*Allium sativum L.*). *Indian J Exp Biol*. 1996;34(7):634-40.
15. Xu JL, Qian SH, Li TZ, Hu B, Tang JM, Xu YB, et al. Effect of asiaticoside on hypertrophic scar in the rabbit ear model. *J Cutan Pathol*. 2009;36(2):234-9.
16. Saulis AS, Mogford JH, Mustoe TA. Effect of Mederma on hypertrophic scarring in the rabbit ear model. *Plast Reconstr Surg*. 2002;110(1):177-83.
17. Tang B, Zhu B, Liang Y, Bi L, Hu Z, Chen B, et al. Asiaticoside suppresses collagen expression and TGF- β /Smad signaling through inducing Smad7 and inhibiting TGF- β RI and TGF- β RII in keloid fibroblasts. *Arch Dermatol Res*. 2011;303(8):563-72.
18. Mendonça FA, Passarini Júnior JR, Esquisatto MA, Mendonça JS, Franchini CC, Santos GM. Effects of the application of Aloe vera (L.) and microcurrent on the healing of wounds surgically induced in Wistar rats. *Acta Cir Bras*. 2009;24(2):150-5.
19. Bedi MK, Shenefelt PD. Herbal therapy in dermatology. *Arch Dermatol*. 2002;138(2):232-42.
20. Heggars JP, Kucukcelebi A, Listengarten D, Stabenau J, Ko F, Broemeling LD, et al. Beneficial effect of aloe on wound healing in an excisional wound model. *J Altern Complement Med*. 1996;2(2):271-7.
21. Vázquez B, Avila G, Segura D, Escalante B. Anti-inflammatory activity of extracts from Aloe vera gel. *J Ethnopharmacol*. 1996;55(1):69-75.
22. Cheng ZJ, Lin CZ, Hwang TL, Teng CM. Broussochalcone A. A potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. *Biochem Pharmacol*. 2001;61(8):939-46.
23. Baek YS, Ryu YB, Curtis-Long MJ, Ha TJ, Rengasamy R, Yang MS, et al. Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki. *Bioorg Med Chem*. 2009;17(1):35-41.
24. Mohamad MY, Akram HB, Bero DN. Tamarind seed extract enhances epidermal wound healing. *Int J Biol*. 2012;4(2):81-8.
25. Araújo LU, Grabe-Guimarães A, Mosqueira VC, Carneiro CM, Silva-Barcellos NM. Profile of wound healing process induced by allantoin. *Acta Cir Bras*. 2010;25(5):460-6.
26. Saito ML, Oliveira F. Confrei: Virtudes e problemas. *Rev Bras Farmacogn*. 1986;1(1):74-85.
27. Tandara AA, Mustoe TA. The role of the epidermis in the control of scarring: Evidence for mechanism of action for silicone gel. *J Plast Reconstr Aesthet Surg*. 2008;61(10):1219-25.
28. Spencer JM. Evaluation of a liquid silicone gel on scar appearance following excisional surgery: A pilot study. *J Drugs Dermatol*. 2010;9(7):856-8.
29. Giorgi V, Sestini S, Mannone F, Papi F, Alfaioli B, Gori A, et al. The use of silicone gel in the treatment of fresh surgical scars: A randomized study. *Clin Exp Dermatol*. 2009;34(6):688-93.

Journal of Dermatology Research

Publish your work in this journal

Journal of Dermatology Research is an international, peer-reviewed, open access journal publishing original research, reports, editorials, reviews and commentaries. All aspects of dermatological health maintenance, preventative measures and disease treatment interventions are addressed within the journal. Dermatologists and other researchers are invited to submit their work in the journal. The manuscript submission system is online and journal follows a fair peer-review practices.

Submit your manuscript here: <https://athenaeumpub.com/submit-manuscript>

